Pregnancy in a Pandemic: Fertility, Fecundity, and Infant Health During COVID-19

Jenna Nobles, UW-Madison Florencia Torche, Stanford

Berkeley Formal Demography Workshop 9 June 2022 Deirdre Lyell, Obstetrics & Gynecology, Stanford Suzanne Tamang, Biomedical Data Science, Stanford Jasmine Zapata, Neonatology, UW-Madison & Wisconsin DHS Fiona Weeks, Population Health Sciences, Title V Director, Wisconsin DHS Sungsik Hwang, Sociology, UW-Madison Alison Gemmill, Public Health, Johns Hopkins

Disaster as a window into human behavior

- We can learn about social systems by introducing *stress* into those systems

- We can learn about human behavior by observing it in a context that changes rapidly around people, a context with interrupted features of social organization and social function

Henry 1920, Fritz 1961, Erikson 1974, 2006, Browning et al. 2006

Fertility specifically:

Why do people have children? How and why do people time fertility? Who adjusts timing under which circumstances?

Bongaarts 2006

Fertility specifically:

Why do people have children? How and why do people time fertility? Who adjusts timing under which circumstances?

How are populations (re)built in the aftermath of mortality crises?

Fertility specifically:

Why do people have children? How and why do people time fertility? Who adjusts timing under which circumstances?

How are populations (re)built in the aftermath of mortality crises?

Opportunities to differentiate biological and behavioral mechanisms

Age

Goldstein and Lee 2020 (link)

By mid-2020, Congress provided 3.6 billion to NIH for COVID-related programs.

Maternal health received < 1% of COVID-related NIH funding in 2020.

Pediatrics received < 3% of COVID-related NIH funding in 2020.

Balaguru et al. 2022 (link)

March 8, 2022

US Maternal Mortality Rate Rose Sharply During COVID-19 Pandemic's First Year

Exposures *in utero* and early childhood have enduring effects on health and welfare

To study the effects of pandemics on health, need to understand attendant change in population composition To study the effects of pandemics on health, need to understand attendant change in population composition

FIG. 2.—Own years of education and paternal characteristics by birth cohort. A uses a 1% sample of native-born US males in the 1960 census. *B–D* use fathers of children born in the United States in 1912–19, as reported in the 1920 full-count census. Estimated cohort trends are quadratic in birth year in A and linear in *B–D*.

Beach, Brown, Ferrie, Saavedra, & Thomas, forthcoming *JPE*: (link)

Almond's well-known findings on the long-term health effects of the 1918 flu pandemic on cohorts exposed *in utero* are not correct. Cohort patterns in health are explained by changes in <u>who</u> gave birth in 1919

Studying fertility and fecundity during COVID

- Fertility: birth record data from California (+ NJ, FL, WI, AL)
- Fecundity: backend data from mobile devices, people across the US

California: 40 million people & 12% of all U.S. births

(or: Norway, Denmark, Finland, Sweden, and Netherlands combined in size)

Birth certificates

Established validity on many of the key markers of relevance to the study of fertility, such as parental sociodemographic measures

Critical: >99% of births in the state are included

Fertility and macroeconomic cycles tend to be procyclical

Concerns about safety may have led to fertility delay

Assisted reproductive technology closed entirely March / April 2020

Unemployment, illness, caregiving stress may have made it harder to conceive & carry to term

Fertility and macroeconomic cycles tend to be procyclical

Concerns about safety may have led to fertility delay

Assisted reproductive technology closed entirely March / April 2020

Unemployment, illness, caregiving stress may have made it harder to conceive & carry to term

U.S. amidst 10+ years of fertility decline when the pandemic began

Abortion and contraceptive access disrupted

Fertility and macroeconomic cycles tend to be procyclical

Concerns about safety may have led to fertility delay

Assisted reproductive technology closed entirely March / April 2020

Unemployment, illness, caregiving stress may have made it harder to conceive & carry to term

U.S. amidst 10+ years of fertility decline when the pandemic began

Abortion and contraceptive access disrupted

Each of these processes has implications that may vary by background characteristics like education

Birth counts, California by year and month

What we need to know:

What would have happened to population fertility had COVID-19 (and accompanying social and economic change) **not occurred**?

Predicting the counterfactual

Predicting the counterfactual

When we have information on unexposed places, it is possible to generate predictions that leverage the period change witnessed in those locations

Difference-in-difference – Angrist & Pischke 2009 (Cunningham Link)

D-in-D example: 2004 tsunami in Aceh, Indonesia

Fig. 1 Age-specific fertility rate (ASFR) and total fertility rate (TFR) differences by period and presence of tsunami mortality in the community. Average quarter-year age-specific probabilities of live birth presented for the pre-tsunami period (January 1, 2000–December 31, 2004) and the post-tsunami period (January 1, 2006–December 31, 2009) for women in 283 communities. In each quarter-year, women from the baseline survey who are alive and aged 15–49 contribute an observation. Pooled data contain 176,862 observations for 6,363 women. Average annual TFR estimated as TFR = $5 \times 4 \times \Sigma_i$ (ASFR_i), where *i* indexes five-year age intervals

Predicting the counterfactual

When we have information on unexposed places, it is possible to generate predictions that leverage the period change witnessed in those locations

Difference-in-difference – Angrist & Pischke 2009 (Cunningham link)

Synthetic cohort – Abadie JEL 2021 (ink)

Synthetic cohort example: arrival of Zika in Recife, Brazil

Grey lines:

Placebo tests in which each donor municipality is swapped in as the "treated" municipality, one-by-one, and the procedure re-estimated.

Distribution of placebo values can be used to generate confidence intervals (dashed black lines)

Year-Month

Rangel, Nobles, Hamoudi 2020 (link)

Predicting the counterfactual

When we have information on unexposed places, it is possible to generate predictions that leverage the period change witnessed in those locations

COVID-19: Arguably no one is "unexposed" to the array of social and economic changes that accompanied the pandemic's arrival

Forecasting

Time series analysis – Hausman & Rapson 2018 (link)

Demographic forecasting – Myrskylä, Goldstein, Cheng 2014 📖

Estimate time-series analysis of aggregate monthly counts of birth data based on ARIMA models that account for trend, seasonality and other sources of temporal autocorrelation

Note: ARIMA estimates: the proportional deviation of birth counts in each month relative to the predicted value for the month based on trend, and seasonal patterns, and other sources of temporal autocorrelation observed pre-pandemic. Navy closed circles denote estimates for all births; red open circles denote estimates for births not supported by ART. 95% confidence intervals.

Note: ARIMA estimates: the proportional deviation of birth counts in each month relative to the predicted value for the month based on trend, and seasonal patterns, and other sources of temporal autocorrelation observed pre-pandemic. Navy closed circles denote estimates for all births; red open circles denote estimates for births not supported by ART. 95% confidence intervals.

Expected ART availability to contribute significantly to reductions

Note: ARIMA estimates: the proportional deviation of birth counts in each month relative to the predicted value for the month based on trend, and seasonal patterns, and other sources of temporal autocorrelation observed pre-pandemic. Navy closed circles denote estimates for all births; red open circles denote estimates for births not supported by ART. 95% confidence intervals.

Largest reductions among older people

Largest reductions among highly-educated people

And people living in highly-resourced zip codes

Some differences by racial categorization

But among people with graduate education, reductions across race and ethnic categories

"Pandemic baby bust" short-lived. Births continue to decline into the first half of 2021 but this decline unlikely attributable to the pandemic alone.

COVID-related fertility declines may reflect intentional fertility delays differentially available to better-resourced people.

As a result: birth cohorts in late 2020 and early 2021 shift marginally in composition. Increased % of births to younger people and people with fewer socioeconomic resources.

Birth certificates cannot tell us about (a) time to conception or (b) early miscarriage Two major concerns of reproductive age people.

To do this: we would ideally follow multiple preconception birth cohorts, a costly endeavor.

Major U.S. preconception studies

		Number of
Study	Recruited Sample	Women/Couples
Wilcox et al. 1988	Women in Research Triangle Park, North Carolina	221
Sweeney 1988	University of Pittsburgh employees	88
Taylor et al. 1992	Women undergoing artificial insemination at a fertility clinic	92
Eskenazi 1995	Women working at seven silicon wafer fabrication sites	481
Hakim et al. 1995	Women employed at two semiconductor manufactures	148
Ellish 1996	Women renewing drivers licenses in Albany County, NY	227
Zinaman et al. 1996	A university-based obstetrics and gynecology center	200
Brown 1997	Members of Group Health HMO in Twin Cities, Minnesota	1,072
Buck 2002	Members of the New York State Angler Cohort Study	102
Buck Louis et al. 2013	16 counties in Michigan & Texas with chemical exposures	501
Wise et al. 2015;	North American women in stable relationships recruited via	2,421
Willis et al. 2018	internet advertisements, flyers, and word-of-mouth	6,873
Porucznik et al. 2016	Couples within one-hour of the University of Utah	183
Messerlian et al. 2018	Fertility center of academic hospital in Boston, MA	799

Source: Buck et al. 2004, authors' search

Innovations in data collection that seek daily data from large, not-representative samples

Several million active users

zip codes periods intercourse contraception ovulation pregnancy

Daily support to reduce missing data

Large amount of information to characterize individuals

•••• Verizon LTE 3:26 PM	* 💷 •				
🚍 📫 🛗 Мус	2 +				
< All	Categories				
cholesterol?					
What kind of student were you?					
Did you grow up near a landfill?					
Which best describes your first k	kiss?				
Have you ever used Clomid or any other > fertility drug?					
Does your work schedule vary?					
Have you been tested for chromosomal abnormalities?					
Are you a runner?	>				
What is your annual household income?					
When did you stop practicing birth control?					
Are you of Cajun descent?					
Do people seek your advice regularly?					

Users are diverse in many ways

Use features of monitoring data

		T.			+
		< T			
	<mark>Ovulation</mark> Did y	<mark>test</mark> ou take an	ovulation	i test?	
	уe	es	r	no	
I	Pregnancy Did y	test — ou take a p	oregnancy	v test?	‡
	positive		? unclear		4
	Basal temp	erature - Enter y	our BBT		
Bas	al temperat	ure			>
↓ ♥ 	Blood pres	ssure —	systo	olic diaste	clear _/
222	Sleep				1
	(went to b	ed			>
*	🌾 woke up				>

≡	1		9	+				
	<	Today		Save				
left Period				- •				
	What'	s up, down t	here	0				
	othing	period	§ spotting					
Mood I feel								
happy	/	calm	frisky					
in love	e	confident	excited					
chatty	/	focused	motivated					
sad		worried	frustrated					
stresse	ed	anxious	cranky					
blah		emotional	impatient	-\~				
angry	/	depressed	weepy	20				
😤 Sympto	* Symptoms							
Select your symptoms from the list.								
Overall								
nothin	g	bodyaches	nausea	~~				
fatigue	e	cold / flu	hot flashes					
Head and	Neck							

We can learn from people's experiences even without direct miscarriage report

Validation

Norwegian registry data: women attending health care appointment (~7 weeks gestation)

Norwegian registry data: women attending health care appointment (~7 weeks gestation)

User data limited to pregnancies that survive to 7 weeks

Generate conception cohorts by place (zip, county, PUMA)

Use discrete-time event history models to estimate the within-place change in monthly probability of

- conception | trying to conceive
- spontaneous termination | positive home pregnancy test

Before and after March 2020, and then, roll-out of vaccination

Use location-level post-stratification weights to weight the data

Jenna Nobles: jnobles@ssc.wisc.edu Florencia Torche: torche@stanford.edu

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Healthy pregnancies. Healthy children. Healthy and optimal lives.

