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This paper .examines simple age-structured models of childhood disease
epidemiology, focusing on nonstationary populations which characterize LDCs.
An age-structured model of childhood disease epidemiology for nonstationary
populations is formulated which incorporates explicit scaling assumptions with
respect both to time and to population density. The static equilibrium properties
and the dynamic local stability of the model are analyzed, as are the effects of
random variability due to fluctuations in demographic structure. We determine the
consequences of population growth rate for: the critical level of immunization
needed to eradicate an endemic disease, the transient epidemic period, the return
time which measures the stability of departures from epidemiological equilibrium,
and the power spectrum of epidemiological fluctuations and combined
demographic—epidemiological fluctuations. Growing populations are found to be
significantly different from stationary ones in each of these characteristics. The
policy implications of these findings are discussed. ~ © 1991 Academic Press, Inc.

1. INTRODUCTION

The impact of many childhood diseases is especially great in less-
developed countries (LDCs). This paper examines simple age-structured
models of childhood disease epidemiology, focusing on nonstationary
populations which characterize LDCs. There is a considerable amount of
literature on age-structured epidemic models (see e.g., Anderson and May,
1983, 1985), most of which deals with stationary host populations. When
the size and structure of the human host population are changing over
time, however, three key questions arise. First, how does the probability of
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transmission of infection change with population size? Second, how do
dynamic quantities (such as the period of damped oscillation in the per-
centage of infected individuals) and static quantities (such as the minimum
immunization fraction for eradication of disease) change with population
growth rate? Third, how does demographic disequilibrium (produced, for
example, by varying fertility rates) affect the temporal pattern of disease
prevalence ? This paper answers these questions for a class of models which
are particularly relevant to the situation in LDCs.

We begin by discussing issues of scale which underly the construction
of transmission rates, and formulate a model which incorporates explicit
scaling assumptions with respect both to time and to population density. In
appropriate limiting cases our model reduces to the constant population
model of Dietz (1975) and the more general models of Dietz (1982), and
McLean (1986). We then analyze the equilibria and local dynamic stability
of our model in the presence of an immunization program, assuming that
the human population is at a stable age distribution. This analysis reveals
the dependence of critical immunization levels, disease periodicity, and
related epidemiological features on population growth rate. Finally we
show how demographic disequilibrium (i.., a nonstable age distribution)
and epidemiological disequilibrium jointly damp out over time. This last
analysis provides the novel insight that purely demographic variability (in
vital rates) can lead to sustained epidemiological cycles. Throughout the
paper we address the relationship of our analysis to practical issues of data
analysis and policy. We show that population growth can significantly
change some rules-of-thumb about immunization program design which
have been derived for stationary populations.

The evolution of our model has been influenced by several previous
studies. Dietz (1975, 1982) established the form and many basic properties
of the class of models from which our model derives. May and Anderson
(1985) explored the catalytic model of disease transmission in an exponen-
tially growing population. McLean (1986) discussed the static properties of
a related but different catalytic model, and presented some simulations of
its dynamics. McLean and Anderson (1988a, b) applied a model with age-
specific transmission to data from various LDCs, presenting a variety of
parameter estimates and discussing epidemiological lessons from the
theory. John (1989a) constructed and analyzed a simulation model which
showed that demographic characteristics of the human population can
have substantial effect on the transmission of disease. John (1989b) dis-
cussed the static properties of a formal model essentially similar to the one
we use here, and presented extensive numerical results on the joint
dynamics of demographic and epidemiological variables. Greenhalgh
(1988) detailed the dynamical stability analysis of catalytic models
assuming demographic stationarity.
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2. INFECTION: A QUESTION OF DENSITY

Models of disease transmission usually count the numbers X of suscep-
tible individuals and Y of infected and infective individuals. A key
ingredient in the models is the transmission rate at which infectives cause
infections; the classical catalytic transmission rate of creation of new infec-
tions is XY, where f is a constant, and BY is the force of infection. This
catalytic rate of infection is problematic when applied to a growing popula-
tion, because it scales as the square of the total number. The problem is
nicely illustrated by May and Anderson (1985), who study the effect of the
catalytic rate in an exponentially growing population. They show formally
that since the force of infection must also grow exponentially, susceptibles
are eventually swept into the infected pool almost instantly after birth. As
May and Anderson point out, this is an extreme situation.

A different approach is to divide Y by total population N to get the
infected fraction y, and then write the rate of infection as B(N) Xy.
Anderson (1982) uses some indirect evidence to argue that B(N) scales as
N¢ with values of ¢~ 0.05. However even with this scaling, g will grow
exponentially fast if N does. Dietz (1982) suggests a saturating form,

B( N)= BOB ooN

ﬁ ON + ﬁ [e9) ’

which reaches a finite limit when N grows exponentially to large values.
McLean (1986) takes B to be a constant independent of N. These last two
formulations do not diverge exponentially when N does, but it is useful to
formulate biological criteria to distinguish them.

What are the basic criteria for the definition of a transmission rate?
First, the time-scale of analysis is important. It is common practice in
biology and applied mathematics to approximate a discrete process by a
continuous one which applies to an appropriately scaled time variable.
Thus in formulating a model we begin with rates for events that occur over
some suitable small time interval, and then construct continuous-time
differential equations from these rates. The continuous equations of the
model are accurate descriptions only on an appropriately coarse-grained
time-scale. They will not describe accurately events that occur within the
duration of the basic small time interval (hence the term coarse-grained).
In the study of most childhood diseases we do not expect our models to
describe accurately what happens within very short time intervals, say
times less than a single day. Therefore formulations of rates which lump
together events occurring over periods less than the minimum time interval
can appropriately be used on a coarse time-scale. Such coarse-grained for-
mulations can include the effects of multiple contacts and inhomogeneous
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mixing, resulting in nonlinear transmission rates, as in our model below
(for other examples see Liu et al, 1986, 1987). If the model is formulated
in terms of infinitesimal intervals whose length strictly goes to zero, a
catalytic transmission rate is probably necessary. However, it would then
be necessary to change the structure of the model to incorporate the
dynamics of multiple events and heterogeneity.

Second, the transmission rate must include both the number of contacts
that occur between individuals and the effectiveness of contacts in trans-
ferring infection. There is evidence that both rate and effectiveness are
functions of the spatial density of the population that is characteristic of
the community under study. As noted by Black (1962, pp. 248-249):

The well-known difference between urban and rural areas in the age when infec-
tion ... occurs can be clearly demonstrated ... it may be in these densely populated
cities, individual households become less important and tend, in an epidemiological
sense, to fuse into one superunit. Thus, the one factor that has been found to
correlate with the difference in ... [transmission] rates is the density of susceptibles.
This density may be important both at the level of the household and also at the
level of the community. It doubtless has its effect through control of the number
and range of contacts between susceptibles and of the frequence of opportunity for
spread of the disease.

Thus we argue that for a given living unit (e.g., village, city) the trans-
mission rate depends primarily on the local spatial density of people. In
addition, for many living units (urban and rural) in both more and less
developed countries the spatial density changes on a time-scale much
slower than do the disease dynamics of interest, so that we may take these
densities to be constant over the time periods of interest in our analysis.

In light of these criteria, we adopt a general model for the force of infec-
tion used by John (1989a, b). Over our basic time unit of 1 day, which is
the smallest time interval in our description (see Appendix), a susceptible
will encounter, on average, m people. Of these, a fraction y are infective,
and we define the probability e that contact with an infective results in
successful transmission of infection. Then, instead of a catalytic term like
By, the basic force of infection equals the probability that at least one
contact produces an infection, which is given by the function

g(y)=1-[1—e(D) y]™®. (1)

We expect that m(D) and e(D) will be functions of the population spatial
density D of the community of interest; m(D) and e(D) are implicitly
dimensionless functions of the basic time unit. In practice we might expect
m to be a random variable, because of the variation between individuals in
behavior and patterns of contact. Then the probability g in Eq. (1) would
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have to be replaced by an average of the nonlinear function on the right-
side of (1), taken over the distribution of m. In the appendix we show that
this average is well approximated by the function itself, for the typical
range of dynamic variables relevant to the diseases we model.

There are two important scaling properties of Eq. (1). The first relates to
population spatial density D; as D gets large we expect that m oc D” and
e oc D79, with p>0 and ¢>0. For large m and small e, Eq. (1) is well
approximated by the linear catalytic form mey. Using this form in place of
the standard catalytic term, we can deduce the behavior of the scaling
exponents, p and g, from analyses which relate the coefficient § of the
standard catalytic form to community size. Anderson’s (1982) analysis
suggests a density scaling in which (p —¢) is snfall, of the order of 0.05.
Dietz’s theoretical saturating catalytic form, written above, leads at high
population densities to the scaling p=1, g=1. It is possible that the
scaling exponents are very different in low-density communities, with p > g,
but there is little evidence to guide one’s choice.

In this paper Eq. (1) is intended to apply to the urban population of a
country on the assumption that the spatial density in all urban areas is not
dissimilar. In light of the discussion above, the scaling regime relevant to
such a high-density setting is one where m oc D, and e o (1/D), so that our
canonical case has e proportional to (1/m). We have explored alternative
density scalings which may be more relevant in lower density communities,
such as villages, and we present illustrative results for the case e oc m~"2
Our qualitative findings about the consequences of population growth are
robust to the choice of spatial scaling, although some of our quantitative
results are sensitive to scaling.

The force of infection in Eq.(1) is affected by time-scaling, which
happens when the basic minimum time interval of the analysis (in this
study, 1 day) is increased or decreased. Our function in Eq. (1) can be
scaled to reflect longer intervals by changing m and e, but is not invariant
to a shortening of this interval. Given the wide use of the catalytic force
of infection, it is worth noting that if we set m=1, Eq. (1) reduces to the
catalytic form ey. In a general catalytic form, fy, the coefficient f can be
larger than 1, whereas e, a probability, is less than 1. However, estimates
of B for childhood diseases such as measles are much smaller than 1, so
that our model remains analytically sensible even for m=1.

3. THE MODEL

We consider a population in which the number of individuals between
ages a and a + da is denoted by N(a, t) da; these individuals can be further
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classified as susceptible, X(a, t) da; infected and infective, Y(a, t) da; and
recovered and immune, Z(a, t) da. The model is described by two non-
independent systems of equations, one describing the dynamics of the host
population, and the other describing the dynamics of disease transmission
(John, 1989a, b). The dynamics of the host population are described by

0,N(a, t)+0,N(a, t)= —p(a) N(a, t)
NO, 0= f(a) N(a, 1) da 2)

8,=0/ot, 8, = d)da,

where p(a) is the age-specific death rate and f(a) is the age-specific fertility
rate.
The second system of equations describes the disease dynamics,

d,X(a, t)+0,X(a, )= —p(a) X(a, t)— i(a) X(a, t)— 0(a) X(a, )
0.Y(a, t)+0,Y(a, t)=Aa) X(a, t)— u(a) Y(a, t)—y¥(a, 1)
0.Z(a, t)+0,Z(a, t)=0(a) X(a, t)+yY(a, t) — u(a) Z(a, t) 3)
X(0,2)=N(0, r)
Y(0,7)= 0 =Z(0, 1),

where 60(a) is the age-specific force of immunization, and 7 is the rate at
which infected individuals recover. In Eq. (3), the force of infection is given
by the function

A1) =g(y())=1—[1—ep(1)]", (4)
where the proportion of infective individuals is

_|§ Y(a, 1) da

YO =N 1y da

(5)
These equations identify states of demographic and epidemiologic equi-
librium. Demographic equilibrium is defined as a steady state of exponen-
tial growth where

N(t)= j:’ N(a, 1) da= Qye" (6)

with the host population’s growth rate, r, defined according to classical
demography (Coale, 1972; Lotka, 1931) and the constant Q, determined
by the initial population structure at time =0 (see Appendix). In
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demographic equilibrium, the population has a stable age distribution, so
that

N(a, 1)=c(a) N(1) (7)
with
c(a) =% (8)
where
a)=e-Bouerd o _ jw I(a) e da, 9)

0

and §g° c(a) da= 1. Finally, the per capita birth rate at demographic equi-
librium is given by
_N(@©O,2) 1

b= (10)

In this system, epidemiological equilibrium is defined as the state in which
the ratios x(a, t)= X(a, t)/N(a, t), y(a,t)= Y(a, t)/N(a,t) and z(a,t)=
Z(a, t)/N(a, t) are constant in time. Epidemiological equilibrium implies
that the force of infection, A(¢), is constant in time. However, the force of
infection can be constant only under conditions of demographic equi-
librium; thus demographic equilibrium is a necessary condition for
epidemiological equilibrium.

In the rest of this paper we assume a constant (Type II) mortality
schedule,

ula)=u>0 for all q, (11)
and an age-independent immunization rate
0(a)=0=0 for all a. (12)

The mortality function given in Eq. (11) may be replaced. with the alter-
native extreme assumption of no mortality up to an age L of certain death;
there is little change in our results so long as L is large (= ~ 70 years).
Both these stylized mortality functions ignore the well-documented dif-
ference between the high death rate at early ages (less than 5 years) and the
somewhat lower death rates of adults. John (1989a) demonstrated that
there are significant differences in the age pattern of epidimiologic behavior
among populations with different age patterns of vital rates. However, our

focus is on aggregate epidemiological measures as a function of host |
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population demography, so we will ignore realistic age patterns of
mortality. On the other hand, our results are sensitive to the assumed age
pattern of immunization and will change if, for example, all vaccinations
are done at birth. Although many models assume that immunization occurs
at a precise target age (such as 9 months or 15 months), we have found
that in developing countries, despite a narrow target range of ages at
immunization, actual ages at immunization among children are quite
widely distributed (John and Tuljapurkar, 1990). This dispersion in
achieved age at immunization reflects variation in the supply of immuniza-
tion services and parental demand. Our assumption (12) is a simple
approximation to this dispersed delivery of immunizations characteristic
of LDCs.

4. EPIDEMIOLOGY WITH DEMOGRAPHIC EQUILIBRIUM

4.1. Basic Equations

Given that the population has reached demographic equilibrium
described by Egs. (6)—(10), the dynamics of the model are captured by the
behavior of the proportion of susceptibles x(z) = (f& X(a, t) da)/N(t), and
of infectives, y(¢). Using Eq. (11) and Eq. (12), it is shown in the Appendix
that x(7) and y(t) follow the simpler differential equations

dx=b—(r+u+0+Ai(1))x

dy=Mt)x—(r+p+7)y (13)
d,=djdt,

where the force of infection, (), is defined by Eq. (4). The proportion z(#)
of recovered individuals follows from x(z) and y(t), since x(t)+ y(¢)+
z(t)=1. Given solutions to Eq. (13), the age distribution of susceptibles
and infectives can be obtained using Eq. (3). Thus the pair of Egs. (13)
describes the dynamics of the epidemiologic system.

The discussion below focuses on the case in which the population-density
scaling of the parameters m and e is such that the product me is constant.
The numerical results we report are for m =10, and are representative of
those for m between 1 and 10. The value of e depends on the density scaling
of parameters in the force of infection, Eq. (1). Each figure presented in this
paper has an upper panel describing results for the case where me =0.95 is
constant, and a lower panel describes corresponding results for the case
m'2e =0.95. Values of the other parameters used in the numerical work are
consistent with the observed values typical of measles: p is chosen to give
a life expectancy at birth of 70 years, the recovery rate y is chosen to give
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a mean time to recovery of 14 days. Throughout the numerical analysis,
we use the basic time unit of 1 day. Sensitivity analyses, varying these
parameter values by amounts within the range of observed values,
revealed no significant changes in our conclusions. We consider population
growth rates ranging from 0 to 4% per year, which span the range of
current (national) population growth rates worldwide. The daily force of
immunization, 6, varies as indicated in the text.

4.2. Disease- Free Equilibrium

Equilibrium with no disease present, when, y* = y(¢)=0 for all ¢
corresponds to a force of infection A* =0, and a proportion of total
population which is susceptible x* = b/(r + u + 6). With the simple
mortality schedule assumed here (Eq. (11)), b=pu+r, and so x* <1 in the
presence of immunization. The stability of this equilibrium determines
whether the introduction of a very small proportion of infectives will
initially result in an increase in the prevalence of disease. It is shown in the

Appendix that the disease-free equilibrium is stable if the quantity

_ bldg/dy],_o _ meb
Pt O +u+y) Huat0r+uty)

(14)

is less than 1 and unstable if p > 1.

The properties of p have considerable epidemiological significance. First,
note that p is proportional to the product me, and thus scales in the same
way as me with population spatial density. Thus, there should be a correla-
tion between the spatial density of living units and the historical record of
successful invasions by disease. We would expect invasion by disease to be
harder in low-density communities, such as villages in LDCs.

Second, there is a major difference between the effect of population
growth rate on p in virgin (i.e., no immunization) disease-free communities
and in disease-free communities with an ongoing immunization program.
When a community has had no immunization (6 =0), it follows from an
expansion of the denominator in Eq. (14) that p decreases approximately
linearly with host population growth rate, r (for small r, say a few percent
per year). On the other hand, when a community has an ongoing vaccination
program, Eq. (14) shows that p increases linearly with r. This surprising
difference is derived analytically in the Appendix and illustrated in Fig. 1.
Observe that the slope of p vs r for the two kinds of communities differs not
only in sign but also greatly in magnitude. We thus have the potentially
important result that in a disease-free community with some level of
ongoing vaccination, invasion becomes easier as the host population
growth rate increases. In contrast increased growth rate has very little effect
on the ability of infection to invade a virgin community.
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FiG. 1. Values of p from text Eq.(14) for increasing population growth rates in
percentage per year. The curves are labeled with the annual force of immunization. Top panel:
the contact probability parameter scales as the inverse of the contact number parameter.
Bottom panel: the contact probability parameter scales as the inverse of the square root of the
contact number parameter.

4.3. Endemic Equilibrium
The endemic state is one where disease is continuously present with
fractions x* and y* of susceptibles and infectives, respectively, given by

x*=b/(r+u+6+41*)

(15)
y*=A*b/(r+u+ 0+ A*)(r+p+y)

These equations are meaningful only if there is a nonzero equilibrium force
of infection, A*. From the second equation of (15) and the defining

653/40/3-4
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equation (4), it is evident that an endemic equilibrium occurs when there
is a nonzero solution to

A=gAb/[r+u+y1lr+p+0+4]). (16)

Figure 2 shows how the function on the right side of Eq. (16) changes with
population growth rate r to yield endemic equilibria for each of several
growth rates.

With the force of infection A(z) described by Eq. (4), there is only one
nonzero solution of Eq. (16) whenever p > 1. If p <1, the only solution of
Eq. (16) is A*=0. (This property holds more generally for nonincreasing
concave functions g; see the Appendix). Thus, if the disease-free equilibrium

0.0015  0.0020

9
0.0010

0.0005

0.0

§. 0 e ————————————— < r=004
o //’—"_‘
//

0 - S —— - _ ___r=003
3 ST
St/ =002

o © / P
/-

I //r/ -------------------- 1=0.01
o )T
S H
s |F r=0.00
] V
e : L L L 1 I I

0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

lambda

FiG. 2. These plots show how the equilibrium force of infection is determined by the inter-
section of the diagonal line and the function determining the force of infection. Here the
immunization rate § =0. The different curves illustrate the effect of population growth rate as
labeled in the lower panel. Panels as in Fig. 1.
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is unstable, there will be an endemic equilibrium. Conversely, if the disease-
free equilibrium is stable, there will be no endemic equilibrium.

4.4. Features of the Endemic Equilibrium

Assuming that p > 1 in Eq. (14), there is an endemic equilibrium for each
value of the host population’s growth rate, r, and force of immunization,
0. The principal effects of r and 6 on the static aspects of endemic equi-
librium are enumerated below.

It is clear from Fig. 2 that at a given spatial density (ie., a given value
of the product me), the equilibrium force of infection A* increases with
growth rate r when there is no immunization. Figure 3 shows the change
in equilibrium force of infection, A*, with r for three different levels of
immunization. Note that A* increases approximately linearly with r, with

equilibrium lambda
0.0010  0.0015  0.0020
T

0.0005

0.0

0.005

equilibrium lambda
0.003

0.0 0.001

1 1 1 i

0 1 2 3 4

r

Fic. 3. Equilibrium force of infection in populations which grow at different annual rates.
The three curves are labeled by the annual force of immunization in effect. Panels as in Fig. 1.
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the three lines having nearly equal slopes. An increase in r from 1 to 2%
per year increases the equilibrium force of infection, A*, by about 40%. In
contrast, the effect of immunization upon A* is modest for the values of r
presented in Fig. 3: a doubling of the force of immunization 6 from 0.095
to 0.181 per year induces a modest change in the force of infection, A*. As
we discuss below, increases in the force of immunization have similar small
effect right up to the critical immunization level at which endemic disease
is eliminated. v

The equilibrium fraction y* of infectives changes with both r and 0 in a
manner very similar to the equilibrium force of infection, A*. Figure 4
shows that increasing population growth rate r has a strong positive effect
on y*. Thus one would expect substantial differences in y* between rapidly
growing LDCs and populations with growth rates near zero. As with the
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0.0
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0.0

ud 1 1 L
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.
FiG. 4. Equilibrium proportion of infective-infecteds in populations which grow at
different annual rates. The curves are labeled by the annual force of immunization in effect.
Panels as in Fig. 1.
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equilibrium force of infection, increased annual force of immunization 6
causes y* to decrease but at a relatively slow rate.

4.5. Critical Immunization Rate

Since an endemic equilibrium only occurs when p>1 in Eq. (14), and
since p decreases with increasing immunization level, there must exist a
critical force of immunization, 6., above which endemic disease will be
eradicated. Setting p=1 in Eq. (14) and using the fact that b=p+r, we
find that the critical force of immunization for a population with growth
rate r and contact parameters m and e is given by

Oczb[L—l]. (17)
r+u+y

04 05 06 07
T T

critical theta
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r
FiG. 5. Critical immunization level, the annual rate of immunization beyond which
endemic disease will be eradicated in a population, plotted against the growth rate of the
population. Panels as in Fig. 1.
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For many childhood infectious diseases, the recovery rate, 7, is numerically
much larger than r or u. In such cases an expansion of the denominator
in Eq.(17) shows that the critical immunization force, ., increases
approximately linearly with the growth rate, r. Figure 5 demonstrates that
for every 1% per year increase in population growth rate, the critical
annual force of immunization increases by roughly 10%, and is thus very
sensitive to the (purely demographically determined) population growth
rate. This finding contrasts sharply with McLean’s (1986) conclusion that
there is little difference between LDCs and the more-developed countries
with respect to the critical level of immunization. The difference between
the upper and lower panels of Fig. 5 is the first indication that the alter-
native density scaling can have sizeable impact. Such differences due to
population density scaling may be important in comparing communities
when, for example, studying rural vs. urban disease dynamics.

It would be useful to have indicators of some kind which change with
immunization level so as to herald the approach to the critical force of
immunization. The static (equilibrium) features of our model may not
provide any useful indicators: for example, as the annual force of
immunization is increased, there is a steady drop in both the equilibrium
force of infection, A*, and the equilibrium proportion of infectives, y*. This
reduction is essentially linear over most of the range (see Fig. 6 for the
equilibrium proportion of infectives), so there is no noticeable change in
the marginal effect of increased levels of immunization. On the other hand,
the approach to the critical force of immunization is discernable in the
dynamic, transient properties of our model, where useful indicators may be
found.

4.6. Local Stability and Transient Dynamics

In the real world, the demography and epidemiology of a population is
constantly subject to perturbations. An analysis of such perturbations
begins with a study of the stability of the demographic—epidemiological
equilibrium determined by Egs. (15) and (16). We use the standard method
(for an epidemiological example see Greenhalgh, 1988) of examining the
dynamics of small deviations from x* and y* as determined by Eq. (13).
Our analysis (given in the Appendix) shows that the time-dependent
behavior of deviations, v(z) = x(#) — x* and w(¢) = y(t) — y*, is exponential.
There are two stability exponents, complex numbers v; and v,, such that
the deviations change as linear combinations of the exponentials e". If the
real parts of both v; are negative, then the deviations v(¢) and w(¢) die out
over time and the equilibrium is locally stable. The general condition for
local stability is given in the Appendix. As noted there, in the linear limit
of Eq.(4) which occurs for m>1 and e<1, the equilibrium x*, y* is
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FiG. 6. Decline in the equilibrium proportion of infective-infecteds in a population as
annual force of immunization is increased. The horizontal axis shows the force of immuniza-
tion as a fraction of the critical immunization level. The different curves show the effect of
population growth rate. Panels as in Fig. 1.

always stable when it exists (ie., when p>1). In the same limit, the
stability exponents are always complex, except possibly when the force of
immunization, 6, is extremely close (within a fraction of a percent) to the
critical value, 6.

We examined numerically the exact behavior of many nonlinear cases,
and always found stability with complex-valued exponents. Since this situa-
tion appears to be typical for our model, we assume it to be the case in the
discussion following.
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The significance of stable but complex-valued stability exponents is
described by the quantities

1
RO
p__

ISl
The return time Tg is the time interval over which a deviation from equi-
librium will decay to about one-third of its initial magnitude. The period Py
describes the cyclicity of the perturbed epidemiological process when the
population is in demographic equilibrium.

Both the period and the return time of perturbations of the epidemiologic
system depend upon the population growth rate, r, and force of immuniza-

T = R(v,;)=Real part of v,,
(18)

3(v,) = Imaginary part of v,.
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FiG. 7. Period of epidemiological transients in populations for increasing growth rate, for
three moderate annual forces of immunization. Panels as in Fig. 1.
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tion, 0. For a given force of immunization, the period of epidemiological
transients decreases as population growth rate r increases. For a given
growth rate r, the period increases as the force of immunization increases;
as the force of immunization approaches the critical force 0., the period
becomes very long. (Indeed, the period can become arbitrarily long if the
force of imunization is held at a value infinitesimally close to the critical
value, as discussed in the Appendix. This mathematical divergence has no
practical importance.) The sensitivity of period to force of immunization is
strongly dependent on growth rate r. Figure 7 shows the decrease of period
with r for three different values of 0: immunization has a large effect on
period only in the stationary (r=0) population. Figure 8 shows period at
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FiG. 8. Period of epidemiological transients in populations as the annual force of
immunization increases. The horizontal axis shows the force of immunization as a fraction of
the critical immunization level. The different curves show the effect of population growth rate.
Panels as in Fig. 1.
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immunization levels equal to increasing fractions of the corresponding
critical force of immunization for three different growth rates. For each
r the periods lengthen greatly as the critical force of immunization is
approached; an increase in r of 1% per year significantly reduces the
period for any given force of immunization. Figure 8 points to an impor-
tant difference in models of stationary populations, which predict that
transient epidemic period should increase significantly following implemen-
tation of an immunization program. In contrast, in rapidly growing
populations we find that transient epidemic period increases only slowly
with increasing force of immunization. Changes in the period are par-
ticularly small in the early stages of an immunization program in a rapidly
growing population. However, a substantial increase (e.g., doubling) of the
period of epidemic transients indicates the approach of the actual force of
immunization, 6, to the critical immunization force, 6., even for rapidly
growing populations.

The properties of the return time are also remarkably different in rapidly
growing and stationary populations. Figure 9 is a plot of return time for
the force of immunization expressed as a fraction of the appropriate critical
force of immunization. The return time for the stationary population tends
to increase with increasing immunization, although the change is very
irregular. With increasing growth rate, the return time becomes strikingly
insensitive to the force of immunization. This fact has interesting and
significant implications for the time-series analysis of epidemiological data,
as explained in the next section.

5. EPIDEMIOLOGICAL AND DEMOGRAPHIC DISEQUILIBRIUM

In the real world, the demography and epidemiology of the communities
is subject to perturbations, which may be viewed as random variability
injected into our formal models. We now use the preceding stability
analysis to discuss the temporal behavior of epidemiological variables in
the presence of external random variation which is uncorrelated with the
internal dynamics of either demography or disease. Such a view of
variability is implicit in time-series analyses of epidemiological and
demographic data (e.g, Anderson, Grenfell, and May, 1984 for epide-
miology; Lee, 1974 for demography). In this section we use our model to
describe significant features that should emerge in a time-series analysis
of epidemiological data. We focus on one tool of time-series analysis,
the power spectrum, and discuss first the properties expected from
purely epidemiological transients and then the combined behavior of
epidemiological and demographic fluctuation. We ignore here the
“demographic” stochasticity (due to finite population size) discussed by
Bartlett (1956).
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FiG. 9. Return time, describing the stability of epidemiological transients, shown for
increasing immunization level. The horizontal axis shows the force of immunization as a
fraction of the critical immunization level. The different curves show the effect of population
growth rate. Panels as in Fig. 1. .

5.1. Power Spectrum for Epidemiological Disequilibrium

The behavior of epidemiological transients when demographic equi-
librium persists is given by the linearized version of Eq. (13), which appears
in the Appendix as Eq. (A3). If we add to the rates of change of these linear
deviations some uncorrelated random variation the result is that deviations
from epidemiological equilibrium will be generated continually. A time
series of a variable such as the proportion of infectives will then fluctuate
around its long-time average. We are interested here in the information
contained in such fluctuations, and specifically in their power spectrum
(see, for example, Box and Jenkins, 1970). Simply put, the power spectrum



342 TULJAPURKAR AND JOHN

describes the contribution of oscillatory behavior at each possible fre-
quency of oscillation to the overall variation in the data. A substantial
literature on childhood diseases discusses the existence and significance of
periodic oscillations in epidemiological variables (London and Yorke,
1973; Yorke and London, 1973; Fine and Clarkson, 1982a, b, 1986). There
is as yet no agreement on the forces that maintain such oscillations. In the
next subsection we demonstrate that demographic disequilibrium is one
possible force. Here we set the stage by answering the question: if random
variation were injected into the epidemiological variables, keeping the
demographic structure constant, what would the power spectrum look
like?

The power spectrum of the proportion of infectives is defined as follows
(other epidemiological variables can be analyzed similarly). Let w(#) be the
deviation of the proportion of infectives from its average value at time ¢,
and compute the Fourier transform

fv(a))zjw e~ (1) dt. (19)

0

Then the power spectrum is the function

P, (w)= (o) (20)

The usual diagnostic approach in time-series analysis is to compute an
estimate of the power spectrum from a finite sample of values of the ran-
dom variable, and to plot the spectrum against frequency. We describe the
features of the theoretical power spectrum generated when the linearized
version of our model, Eq.(13), is subject to random perturbation. As
shown in the Appendix, our model predicts a power spectrum proportional
to the function

1
(0—wg)? +(1/Te)*

(21

Here, wg =2n/(Pg), with Pg and Tg as in Eq. (18). As w increases from 0,
this function has a single peak at the frequency w = wg, and the width of
that peak is proportional to 1/Tg. Thus the power spectrum will have a
peak at frequency corresponding to the period in Eq. (18), and the width
of the peaks will be inversely proportional to the return time.

It is easy to deduce the implications for the power spectrum of our
earlier analysis of period and return time. For stationary populations the
power spectrum has its widest and therefore least well-defined peak when
there is no or little immunization. As the force of immunization increases,
the peak width will narrow and the location of the peak will move to lower
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frequency (longer period). For growing populations, the width of the peak
in the power spectrum is greater because the return time is lower; on the
other hand, the width of the peak will change very little as the force of
immunization increases. The location of the peak, which indicates the
frequency of epidemic cycles, will move much less and more gradually than
in a stationary population as the force of immunization increases.

5.2. Epidemiological Effects of Demographic Disequilibrium

Demographers have long recognized that stochastic perturbations affect
a population’s vital rates, and an extensive theoretical and data-analytic
literature deals with the consequences of such perturbations (see e.g., Lee,
1974; Cohen, 1977; Tuljapurkar, 1989). In this paper we show that purely
demographic disequilibrium, whatever its causes, will generate epidemiologi-
cal disequilibrium. Our analysis proceeds in the following steps: (i) we state
necessary facts about the demography of a population which has been per-
turbed from its stable age distribution; (ii) we analyze the deterministic
dynamics of simultaneous departures from equilibrium in both
demographic and epidemiological variables in our model; (iii) we sum-
marize the key features of the epidemiological power spectrum which
would be generated by perturbations which affect only the overall
demography.

Keyfitz (1968) and Coale (1972) detail the demographic analysis of a
population which is not at its stable age distribution. The age structure of
the population is given by a sum of exponentials (instead of the single
exponential in Eq. (6)),

N(a,1)=) Qci(a)e". (22)

i=z0

Here the r; are roots of Lotka’s equation; the only real root r,=r is the
long-run population growth rate used in Eq.(6). The age-dependent
functions in Eq. (22) are

ci(a)=(1/z;) l(a) e ", (23)
where

t=[ la)e~" da. (24)

Births at time ¢ are given by N(0, ¢) and the birthrate. is given by the ratio
of births to the total population, with total population

N(t)= ) Qe (25)

i=z0
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We define the differences

=r—r; (26)

1

K

which describe the speed and periodicity of the demographic approach
to a stable age distribution. Here we assume there is demographic
disequilibrium at ¢ =0, but that it is small so that the ratios

10:1/00 <1, izl (27)

Our epidemiological Eq. (3) can be reduced (see Appendix) to a pair of
equations for the variables

_I5 X(a, 1) da [& Y(a, 1) da
Qoert ’ Qoert
Note that here x and y are not proportions of susceptibles and infectives,

although they approach those proportions at long times. The equations for
these variables are

x(1) y(t) = (28)

dx=b—(r+u+0+A1)x+ Y (Q:/Q0)e /1)),
i1 (29)

dy=At)x—(r+p+y)y

These equations become identical to the simpler Eq. (13) at long times,
when the population gets very close to its stable age distribution. Therefore
the equilibria of this time-varying model are the same as those of the
simpler model, Eq. (13). In the present set of equations the proportion of
susceptibles is given by the time-dependent expression

y(1)
1 +Zi>1 (Q:/Q0) e Mt

It follows that the force of infection, Eq.(4), responds to purely
demographic disequilibrium (Q,;#0 for i#0), thereby generating
epidemiological disequilibrium.

Now consider small deviations v(¢), w(¢) in the variables of (28) away
from their equilibrium values x*, y*, respectively. The dynamics of these
deviations are analyzed by obtaining linearized equations from (29) and
solving them. The Appendix gives details of this procedure which yields the
final result that the vector

=10 (30)

w(t)
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has time trajectory given by

u(z)= Y <19,-e“"+ Y w,,-e"‘"> R, (31)

i=1,2 =1

The constant vectors R; and the coefficients are defined in the Appendix.
The result in Eq. (31) shows that epidemiological variables display a
superposition of time dependence: there is the purely epidemiological
dynamic which is summarized by the quantities in Eq. (18), and there is the
purely demographic relaxation process which is described by Eq. (22). The
demographic refaxation process has characteristic return times

1
TDi:r——‘.R(r,.) (32)
and characteristic periods
2n
= (33)
RIS

The most important demographic transient (Coale, 1972) is known to be
a generational cycle with a period of about 20 years.

5.3. Effect of Demography on the Power Spectrum

Consider now the consequence of small random perturbations affecting
the demographic rates of the population. These would continually generate
demographic transients which in turn would produce epidemiological
transients. What are the oscillatory properties of such transients? From
Eq. (31) it follows that the power spectrum of these oscillations will be
dominated by a sum of terms of the form

(constant) (constant)’
(w— wE)z + (I/TE)2 (0—wp)*+ (I/TDi)z'

(34)

The first term is similar to the purely epidemiological term in Eq. (21) and
has all the properties discussed earlier. The second term, for values of i > 1,
describes the demographic contribution. The dominant demographic
contribution is a peak in the power spectrum, located at a frequency corre-
sponding to the generational cycle. In view of the typical epidemiological
periodicity of 2-5 years (Figs. 7 and 8), the main demographic peak will be
widely separated from the epidemiological peak. Thus a spectral analysis
aiming at the high epidemiological frequencies would almost certainly
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ignore the much lower frequency demographic contribution. The separa-
tion between epidemiological peak and demographic peak would be much
greater in populations with high growth rates. Only when the force of
immunization in a population is increased and held at close to the critical
value 0, will the epidemic period lengthen to values that might approach
the demographic cycle.

6. CONCLUSIONS

The rapid growth rates of human populations in many LDCs can be
expected to have a significant effect on epidemics and the endemic level of
childhood diseases. The major epidemiological conclusions of our analysis
of an appropriate class of age-structured epidemic models are listed below.

(1) In a community with some level of ongoing vaccination, invasion
by disease becomes easier as the population’s growth rate increases. In con-
trast increased growth rate has very little effect on the ability of infection
to invade a virgin community.

(2) The equilibrium proportion of infectives in a community
increases when the population’s growth rate increases, for any fixed level of
immunization.

(3) The critical force of immunization needed to eradicate an
endemic disease increases rapidly with population growth rate. For the
parameter values we used, the critical force increases by more than 10%
for an increase in growth rate of 1% per year.

(4) The rule-of-thumb that transient epidemic period should increase
on implementing an immunization program is not generally useful in
rapidly growing populations. This rule is particularly inappropriate in the
early stages of an immunization program in a fast-growing population.
However, a substantial increase (such as a doubling) of the period of
epidemic transients does herald the approach of the critical immunization
level even for high growth rates.

(5) The return time, which measures the stability of departures from
epidemiological equilibrium, changes greatly with population growth rate.
With increasing growth rate, the return time becomes insensitive to the
level of immunization.

(6) If epidemiological fluctuations are triggered by random perturba-
tions, their power spectrum has features which change substantially with
population growth rate. In a stationary population, the power spectrum
has its widest and therefore least well-defined peak when there is no or
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little immunization. As the force of immunization increases, this peak
narrows and the location of the peak will move to lower frequency (longer
period). For populations with increasing growth rate, the width of the peak
in the power spectrum is greater because the return time is lower; on the
other hand, the width of the peak changes very little as the force of
immunization increases. The location of the peak moves much less with
changing immunization than is the case for a stationary population.

(7) Demographic disequilibrium (i.e., a population away from stable
age distribution) results in epidemiological disequilibrium. The dynamics of
such combined disequilibrium are a superposition of the purely epidemiologi-
cal dynamic and the purely demographic relaxation process. As a result
continual stochastic perturbations to overall demographic rates can result
in sustained epidemiological fluctuations.

(8) A spectral analysis of demographic—epidemiological fluctuations
would reveal two widely separated peaks in the power spectrum. A spectral
analysis aiming at the long epidemiological frequencies would miss the
much shorter frequency demographic contribution. The separation between
epidemiological peak and demographic peak would be greater in popula-
tions with high growth rates.

APPENDIX

1. The form of the force of infection (1) and the model (2)—(5)
depend on an implicit choice of time scale. This is most clearly
demonstrated by starting with a discrete time model in which time is
measured in units of length 4. Our starting point is a discrete-time system
of equations; the analog to the first equation of (3) is

Xa+4,t+4)=1(a, 4) X(a, t)— O(a, 4) X(a, t)— A(a, 4) X(a, 1),

where 11, ©, A are respectively single period values of survival rate,
immunization rate and probability of infection. For small 4, we
approximate this discrete equation by the first, continuous, equation in (3),
if we make the identifications

ua) =124
oa)= 244,
l(a)zL‘ZA—).

653/40/3-5
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For arbitrary 4, the force of infection function A must therefore be defined
in terms of the time unit. Thus the arguments in John (1989a, b) lead to

(1= [1—e(D) y]"®)

Ma)= y

The quantities e(D), m(D) are implicitly dimensionless functions of 4. In
the text we assume that the time unit is 4 =1 day, and thus arrive at (1).
There is a suppressed dimension of time ! in the force of infection used
throughout the text.

2. Suppose that the number of contacts m is replaced by a random
variable M with mean &M =m and variance o2,. Consider the function

GM)=1—(1—ey)™.
By a standard Taylor expansion we find approximately the difference
EG(M)— G(m)~ 30,,[log(1 —ey)]* (1 —ey)™.

For the diseases of interest here it is always the case that y < 1, with typical
values in the range 10 ~2— 10>, By definition e < 1, so that ey <1 and to
high accuracy log(1 —ey)~ —ey. In addition 0 < G < 1, and thus

EG(M)—G(m) = (ey)? o2,

Therefore, unless the variance in M is very large, we may reasonably use
the function of the average instead of the averaged function.

3. To derive Eq. (13), use Egs. (11) and (12) to integrate terms in
Eq. (2) with respect to age a. Then substitute

1

0

x(0=5 f: X(a, ) da (A1)

ert

and y(¢) defined likewise, and use Eqgs. (6) and (10).
4. Around any equilibrium x*, y* of Eq. (13), insert

x(t)=x*+0(2), y(t)=y*+w(t) (A2)

and retain only terms linear in v, w to find the local stability equation

d,u=Su, u=<v),
w

S_(—(k1+i*) —x*i’)
- A* —(ky—x*A))

(A3)
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Here’ kl:(l’t+r+6)> k2=(.u+”+')’),
di(y)

=20

dy |,-,

*

and A* is the equilibrium force of infection. The eigenvalues v,, i=1, 2, of
S are roots of

v+ Bv+C=0,
where
B=A*4+k +k,— A'x*, C=ky(A*+ky)—Vk x* (A4)
Stability (when the real parts R(v;) <0) occurs when
B>0 and C>0. (AS)

Complex roots occur when B?>4C.

For the disease-free equilibrium, y*=0=A1* and A’'=me, we find
instability (C <0) when

meb

1
kiky

p:
and stability (C>0, B>0) when p<1. Using k,=(u+r+86),
ky=(u+r+y),

_ me

P ey

when 0 =0. When 60 #0, recall that y> (u+r) to find
p:'g—:(u+r)+0[(u+r)2].

Hence p decreases slowly with r for # =0 and increases with r for 0 #0.

5. Demographic and epidemiologic equilibrium. Equation (15) shows
that y* is concave nondecreasing in A*. Any nonnegative concave
nondecreasing function g(y*) will therefore be a concave nondecreasing
function of A*. Thus there will be just one point at which A*>0 and
A*¥ = g(y*(4*)), providing that



350 TULJAPURKAR AND JOHN

6. Stability of demographic-epidemiologic equilibrium requires
condition (AS5). If m>1 and e <1, then function (1) is effectively linear.
For this linear case, algebra shows that if p <1, then (AS) is true. For the
parameter values used here, with y>r, p, 0, it also follows that B><4C
when p > 1. Hence the roots v, v, of (A4) will in general be complex; real
roots can only be expected when (p—1) is of the order of uf.. This is
therefore also the requirement for long-period epidemiological transients.

7. Demographic disequilibrium: Start by integrating (2) with respect
to age a and substitute (Al). In the resulting equations use Egs. (22) and
(25) to obtain Eq. (29). Next use Eq. (A2) and expand to linear terms to
obtain

(1) = y*+w(t)—y* Y (0,/Q0) e, (A6)

i1

My(e)) =A%+ 2w(t) = y*2' 3, (Q:/Qo) e (A7)

iz1

Use Egs. (A2), (A6), and (A7) in Eq. (29), retaining only terms linear in v,
w, and the Q, (i>1) to obtain

d,u=Su+ (1), (A8)

where u, S are as in (A3) and

f(t)= 3 (Q:/Qo) e ™"

iz1

(l’x*y* + [1/1,.]>. (A9)

— A x*p*

Writing R; for the right eigenvectors of S corresponding to the eigenvalues
v;, i=1,2, we can find «;, i=1,2, and f;, [>1, i=1, 2 such that

u(0)=0o;R; +o,R,, (A10)
(”"*_y;*i*[ylf’]> = BuR, + BuR,. (All)
Then standard linear algebraic methods show that the solutién of (A8) is
u()= Yy, <8,—e”"+ Y lﬁ,,-e""’) R, (A12)
i—1,2 I>1

with
V= Bu/(vi+K)),
$=0o;— Z /8

=1

(A13)
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~6. Power spectra for linear stochastic differential equations are well
known. In. particular a scalar equation

d,x = Ax+e(t),
where ¢(¢) is “white” noise, leads to a spectrum for x() of

1

PO e oS my

This is the basis for Eqgs. (21) and (34). (See, e.g., Roughgarden (1979) for
a biologically oriented discussion of this material). Equation (21) is
obtained by adding a noise term to the right side of the differential equa-
tion in (A3). Equation (34) is obtained by adding noise to Eq. (A8) and
solving the result by Fourier transformation.
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