Bayesian indirect estimation of under-five mortality from summary birth histories

Carl Schmertmann Florida State University Berkeley Formal Demography Workshop May 2021

Summary Birth Histories

- Survey/census data with
 - Women's ages a
 - # children ever born B_a (<u>no details on when born</u>)
 - # children died D_a (<u>no details on when died</u>)
- Fractions surviving S_a = 1- (D_a / B_a) by <u>woman's</u> age depend on ...
 - Mortality level
 - Mortality pattern by age
 - Fertility Pattern by age
 - Time Trends in Rates

Objective

Estimate under-five mortality q(5) from {B_a,S_a}

Problem

Survival of children of a-yr-olds is a mixture of survival probs for those born in survey year (now age x=0) born 1 year ago (now x=1) ...

```
born 10 years ago(now x=10)
```


Expected fraction a-kids alive = Fertility-wtd avg of p_x :

$$\bar{S}_{a} = \frac{\sum_{x} f_{a-x} p_{x}}{\sum_{x} f_{a-x}} = \sum_{x} W_{ax} p_{x}$$

Brass Indirect Estimation

Brass Indirect Estimation

- Fertility patterns are robust
 - Unimodal, peak in 20s
 - Allows reasonable guesses of kids' avg mortality exposure from women's ages

 $q(5) \approx 1 - S_{30-34}$

- Mortality patterns are robust
 - Child mortality concentrated in infancy
 - Falling mortality rates over ages 0-5

if age-specific rates are **unchanging**

Feeney Time Allocation

if age-specific rates $\rightarrow q(5) \approx 1 - \bar{S}_{30-34}$ are unchanging

if fertility <u>constant</u> $\rightarrow q_p(5, -5) \approx 1 - \bar{S}_{30-34}$ but mortality <u>changing</u> _{5 yrs ago}

Remaining Problems

- Sampling noise (esp. if we discard data from all women ≠ 30-34)
- Uncertainty about demographic parameters
 - true age pattern of fertility
 - true age pattern of child mortality
- Changing rates
 - Fertility rates are falling rapidly in places where indirect methods are still necessary
 - Falling fertility \rightarrow
 - longer times since births
 - longer exposure to mortality (higher avg x for women age a)
 - lower % of children surviving at a given level of current q(5)

A Bayesian Version of Brass

Bayesian Version: Main Ideas

Age-specific **fertility** rates vary over time

 -> each *cohort of women* may have faced
 different age-specific rates in the past

a=20 in 2010:
$$f_{12,2002} \rightarrow f_{13,2003} \rightarrow \dots f_{20,2010}$$

a=30 in 2010: $f_{12,1992} \rightarrow f_{13,1993} \rightarrow \dots f_{29,2009} \rightarrow f_{30,2010}$

Age-specific mortality rates vary over time

 -> each cohort of children may have faced
 different age-specific survival probs in the past

x=5 in 2010: $p_{0,2005} \times p_{1,2006} \times ... \times p_{5,2010}$ x=10 in 2010: $p_{0,2000} \times p_{1,2001} \times ... \times p_{9,2009} \times p_{10,2010}$

Bayesian Version: Main Ideas

- Build parametric models for demographic rates in each period during past ≈30 yrs
- Choose priors for parameters
 [= Which sets of parameters are plausible/implausible
 before we look at any SBH data?]
- Among plausible fertility and mortality histories, find those that are <u>also</u> consistent with observed SBH data at women's ages a=20,21,...,44
- Summarize time trends of q(5) in the most likely histories

Fertility Model

Unique rate f_{at} for each (age, period)

PARAMETERS

- 1. <u>Age pattern</u> for period *t*:
 - Weights for each of 4 *"archetypes"*
 - 1st and last period wts ~ *Dirichlet(1,1,1,1)*
 - Linear change in weights over time
- 2. <u>Level</u> for period *t*
 - $TFR_t \simeq 2$ nd-order random walk, sd= σ_{TFR}

Archetypes: fertility age patterns

Mortality Model

Unique survival prob p_{xt} for each (age, period)

PARAMETERS

- 1. <u>Level</u> for period *t*
 - α_t is the mort level in Clark (2019) model
 - $\alpha_t \approx \text{logit}(q5)_t \text{ for period } t \text{ life table}$
 - $\alpha_t \sim 2^{nd}$ -order random walk, sd= σ_{α}

Mortality Model (Clark 2019)

Demography (2019) 56:1131–1159 https://doi.org/10.1007/s13524-019-00785-3	
A General Age-Specific Mortality Model With an Example Indexed by Child Mortality or Both Child and Adult Mortality	Check for updates
Samuel J. Clark ^{1,2}	
Published online: 28 May 2019 © Population Association of America 2019	

$$\alpha_t \rightarrow \begin{bmatrix} logit(_1q_0) \\ logit(_1q_1) \\ \vdots \\ logit(_1q_{109}) \end{bmatrix}_t \rightarrow \begin{bmatrix} p_0 \\ p_1 \\ \vdots \\ p_{109} \end{bmatrix}_t \rightarrow \begin{cases} cohort \\ survival \\ probs \end{cases}$$

Clark Model Constants

Life Table Relationships

MORTALITY PARAMETERS: EXAMPLE

Expected parities and child survival by woman's age

A woman who is was a=28 yrs old in 2010 0 yrs old in 1982 m yrs old in 1982+m

Her expected parity (children ever born) is $F_{28} = f_{12,1994} + f_{13,1995} + ... + f_{28,2010}$

Her expected fraction of children surviving is

was

$$\pi_{28} = (f_{12,1994} / F_{28}) p_{16} + (f_{13,1995} / F_{28}) p_{15} ... + (f_{28,2010} / F_{28}) p_{0}$$

→ more plausible {fertility, mortality} trends
 (1) look like historical patterns [PRIORS]
 (2) have expected parities & surv that match obs. {B,S} [LIKELIHOOD]

Example Results

Example: Cameroon 2011 DHS

• 15,428 women 15-49

 Actually have full birth histories (incl. timing of births and deaths)

- Summary Birth History Form
 - 42,070 children ever born
 - 5,976 children had died

Summary

- Bayesian approach to indirect estimation includes uncertainty about
 - age patterns in fertility rates
 - age patterns in child mortality rates
 - time trends in fertility and mortality
 - sampling noise in (B,S) data
- The approach produces probabilistic estimates of
 - under-five mortality
 - TFR
 - time trends in rates
- Still in progress: In most (but not all) cases the model matches alternative under-five mortality estimates well

THANKS!

Carl Schmertmann Florida State Univ

schmertmann@fsu.edu

schmert

schmert.net