In these exercises, we will calculate person-years lost from a sudden mortality crisis like Covid. Our approach will be to do the full life-table calculation and then compare this to the approximation involving \(H/A\) that we did in lecture.

More future reference (but not now), see Goldstein and Lee (2020) (https://www.pnas.org/content/117/36/22035.full)

A. Person years remaining in stationary pop with US life table

Here we’re going to sum up all of the person-years in a simulated but not-totally-unrealistic population

Notes: * We are using 2019 period life table from Human Mortality Database * Remaining person years is a cohort concept, but we are using period life expectancy for simplicity here. * We are using stationary age structure, not the observed * To give us numbers that are the right order of magnitude, we’re going to assume 3.5 million births. * We’re going to be a bit sloppy with distinction between l(x) vs L(x). For actual research, please be more careful.

Some preliminaries

Nx.stationary = lx * 3.5
sum(Nx.stationary) ## [1] 278.8149
[1] 278.8149

Now we’re ready to calculate remaining person years, which will be the number of people in each age group, multiplied by their life expectancy, summed over all ages.

Nx.stationary
  [1] 3.500000000 3.480559193 3.479202039 3.478401915 3.477775859 3.477289004 3.476836986
  [8] 3.476419791 3.476037406 3.475655063 3.475272762 3.474855754 3.474404052 3.473917670
 [15] 3.473327154 3.472597832 3.471660357 3.470410784 3.468849450 3.466630097 3.464169663
 [22] 3.461468664 3.458354744 3.455209073 3.451893664 3.448512465 3.444893427 3.441071717
 [29] 3.437151130 3.432994693 3.428671843 3.424080500 3.419324334 3.414472340 3.409320377
 [36] 3.404040024 3.398529943 3.392825206 3.386825217 3.380430163 3.373777271 3.366767107
 [43] 3.359670718 3.352254044 3.344552719 3.336435323 3.327638750 3.318135300 3.307831929
 [50] 3.296769233 3.284856503 3.272070512 3.258030815 3.242883712 3.226645228 3.208626515
 [57] 3.188954016 3.167849506 3.144902753 3.120467931 3.094242011 3.066457445 3.036340382
 [64] 3.004265068 2.970537665 2.935162942 2.897977177 2.858517027 2.816916842 2.773452596
 [71] 2.727766025 2.678596514 2.625740545 2.569709785 2.509498591 2.446168612 2.376913907
 [78] 2.303115954 2.224991218 2.143013398 2.055692900 1.963057032 1.864667902 1.761442311
 [85] 1.652720914 1.540047051 1.424018734 1.304725884 1.182183283 1.060226928 0.941983961
 [92] 0.831472518 0.722161102 0.615871444 0.515278869 0.421916846 0.339684840 0.267828874
 [99] 0.206518139 0.155514387 0.114212214 0.081701981 0.056861486 0.038461519 0.025262681
[106] 0.016102077 0.009954834 0.005968038 0.003469562 0.001956463 0.001070599

Q.1 How many person years remain per person?

(Fun fact: in stationary population average life remaining is the same as average age of pop! Life left = life lived)

B. Person Years Lost

Here we assume there is a “flash” of mortality, with intensity 1/3 of all-cause annual mortality. How many person years will be lost?

print(lost.py)
[1] 14.83438

What fraction of the original person-years of the population were lost?

print(lost.py.frac)
[1] 0.001278089

Q2. How many person years remain per person after the flash of mortality? How many years are lost per person? Is this a few years, months, weeks, days, or hours, …?

## approximately 3 weeks 
0.05320511*365
[1] 19.41987

C. Share of person-years lost (using our approximation)

Compare your answer to our approximation which tells us that the fraction of person years lost in this case should be about H * delta/A

We leave it to you to calculate \(H\) and \(A\) that correspond to the stationary population to the 2019 US life table

(Note: The values should be something close to \(H = 0.15\) and \(A = 40\). If you’re having trouble estimating the exact values, you can use these in order to answer the Qs)

H
[1] 0.1541554

Q3. How did we do? Are we close to life-table based calculation?

We did well = are very close!

Q4. On twitter, one of the workshop participants didn’t like this approach, saying that the tiny number was misleading – and said that it was like comparing the economic damage done by Hurricane Katrina in New Orleans to the GDP of the entire USA. It would seem small, but is a minimizing way to think about the actual damage of the Hurricane. What do you think?

I think it’s one perspective.

Note: When comparing past mortality crisis, Goldstein and Lee had similar concerns and ended up divided remaining-years-lost from each crisis by the remaining-years-lost in a corresponding non-crisis year. You can look at their Fig. 4 to see the results of this analysis. (https://www.pnas.org/content/117/36/22035.full)

Congratulations!

You’ve finished the last exercise of the day!

LS0tCnRpdGxlOiAiTW9ydGFsaXR5IEV4ZXJjaXNlcyAzOiBQZXJzb24gWWVhcnMgUmVtYWluaW5nIgphdXRob3I6IEpvc2h1YSBSLiBHb2xkc3RlaW4Kb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKSW4gdGhlc2UgZXhlcmNpc2VzLCB3ZSB3aWxsIGNhbGN1bGF0ZSBwZXJzb24teWVhcnMgbG9zdCBmcm9tIGEgc3VkZGVuIG1vcnRhbGl0eSBjcmlzaXMgbGlrZSBDb3ZpZC4gT3VyIGFwcHJvYWNoIHdpbGwgYmUgdG8gZG8gdGhlIGZ1bGwgbGlmZS10YWJsZSBjYWxjdWxhdGlvbiBhbmQgdGhlbiBjb21wYXJlIHRoaXMgdG8gdGhlIGFwcHJveGltYXRpb24gaW52b2x2aW5nICRIL0EkIHRoYXQgd2UgZGlkIGluIGxlY3R1cmUuCgpNb3JlIGZ1dHVyZSByZWZlcmVuY2UgKGJ1dCBub3Qgbm93KSwgc2VlIEdvbGRzdGVpbiBhbmQgTGVlICgyMDIwKSAoaHR0cHM6Ly93d3cucG5hcy5vcmcvY29udGVudC8xMTcvMzYvMjIwMzUuZnVsbCkKCgoKCgojIyBBLiBQZXJzb24geWVhcnMgcmVtYWluaW5nIGluIHN0YXRpb25hcnkgcG9wIHdpdGggVVMgbGlmZSB0YWJsZQoKSGVyZSB3ZSdyZSBnb2luZyB0byBzdW0gdXAgYWxsIG9mIHRoZSBwZXJzb24teWVhcnMgaW4gYSBzaW11bGF0ZWQgYnV0IG5vdC10b3RhbGx5LXVucmVhbGlzdGljIHBvcHVsYXRpb24KCk5vdGVzOgoqIFdlIGFyZSB1c2luZyAyMDE5IHBlcmlvZCBsaWZlIHRhYmxlIGZyb20gSHVtYW4gTW9ydGFsaXR5IERhdGFiYXNlCiogUmVtYWluaW5nIHBlcnNvbiB5ZWFycyBpcyBhIGNvaG9ydCBjb25jZXB0LCBidXQgd2UgYXJlIHVzaW5nCiBwZXJpb2QgbGlmZSBleHBlY3RhbmN5IGZvciBzaW1wbGljaXR5IGhlcmUuCiogV2UgYXJlIHVzaW5nIHN0YXRpb25hcnkgYWdlIHN0cnVjdHVyZSwgbm90IHRoZSBvYnNlcnZlZAoqIFRvIGdpdmUgdXMgbnVtYmVycyB0aGF0IGFyZSB0aGUgcmlnaHQgb3JkZXIgb2YgbWFnbml0dWRlLCB3ZSdyZQogZ29pbmcgdG8gYXNzdW1lIDMuNSBtaWxsaW9uIGJpcnRocy4KKiBXZSdyZSBnb2luZyB0byBiZSBhIGJpdCBzbG9wcHkgd2l0aCBkaXN0aW5jdGlvbiBiZXR3ZWVuIGwoeCkgdnMgTCh4KS4gRm9yIGFjdHVhbCByZXNlYXJjaCwgcGxlYXNlIGJlIG1vcmUgY2FyZWZ1bC4KCgpTb21lIHByZWxpbWluYXJpZXMKCmBgYHtyfQoKbGlicmFyeShkYXRhLnRhYmxlKQpkdCA8LSBmcmVhZCgiZXhlcmNpc2VfMl9kYXRhLmNzdiIpICMjIGRhdGEKc291cmNlKCJleGVyY2lzZV8yX2Z1bnMuUiIpICMjIGZ1bmN0aW9uCmhlYWQoZHQpICMjIGp1c3QgdG8gc2VlIHdoYXQncyB0aGVyZQpoeCA9IGR0JGh4ICMjIGFzc2lnbiBiYXNlbGluZSBtb3J0YXRpdHkgKGZyb20gMjAxOSBwZXJpb2QpCgojIyB0byBnZXQgdGhlIHN0YXRpb25hcnkgcG9wdWxhdGlvbiwgd2UgY29tcHV0ZSB0aGUgbGlmZSB0YWJsZSBmcm9tIHRoZXNlIG1vcnRhbGl0eSByYXRlcwpsdCA9IGdldC5sdChoeCkgIyMgZnVuY3Rpb24gdG8gbWFrZSBsaWZlIHRhYmxlLCBwcmludChnZXQubHQpIGZvciBnb3J5IGRldGFpbHMKbHggPSBsdCRseApleCA9IGx0JGV4Ckx4ID0gbHQkTHgKeCA9IGx0JHgKIyMgeW91IGNhbiB0cnkgcGxvdHRpbmcgYSBmdW5jdGlvbiBpZiB5b3Ugd2FudDogZS5nLiBwbG90KHgsIGV4KQoKIyMgVG8gbWFrZSBtb3JlIHJlYWxpc3RpYyBsZXQncyBoYXZlIHRoZSBzdGF0aW9uYXJ5IHBvcHVsYXRpb24gaGFzIDMuNQojIyBtaWxsaW9uIGJpcnRocyBwZXIgeWVhciwgcHJldHR5IGNsb3NlIHRvIFVTQQoKTnguc3RhdGlvbmFyeSA9IGx4ICogMy41CnN1bShOeC5zdGF0aW9uYXJ5KSAjIyBbMV0gMjc4LjgxNDkKYGBgCgoKCk5vdyB3ZSdyZSByZWFkeSB0byBjYWxjdWxhdGUgcmVtYWluaW5nIHBlcnNvbiB5ZWFycywgd2hpY2ggd2lsbCBiZQp0aGUgbnVtYmVyIG9mIHBlb3BsZSBpbiBlYWNoIGFnZSBncm91cCwgbXVsdGlwbGllZCBieSB0aGVpciBsaWZlCmV4cGVjdGFuY3ksIHN1bW1lZCBvdmVyIGFsbCBhZ2VzLgoKYGBge3J9CnJlbWFpbmluZy5weSA9IHN1bShOeC5zdGF0aW9uYXJ5ICogZXgpCiMjIFsxXSAxMTYwNi42OCwgb3IgMTEuNiBiaWxsaW9uCmBgYAoKPiBRLjEgSG93IG1hbnkgcGVyc29uIHllYXJzIHJlbWFpbiBwZXIgcGVyc29uPyAgCgo+IChGdW4gZmFjdDogaW4gc3RhdGlvbmFyeSBwb3B1bGF0aW9uIGF2ZXJhZ2UgbGlmZSByZW1haW5pbmcgaXMgdGhlIHNhbWUgYXMgYXZlcmFnZSBhZ2Ugb2YgIHBvcCEgCj4gTGlmZSBsZWZ0ID0gbGlmZSBsaXZlZCkKCmBgYHtyfQoKYGBgCgoKCiMjIEIuIFBlcnNvbiBZZWFycyBMb3N0CgpIZXJlIHdlIGFzc3VtZSB0aGVyZSBpcyBhICJmbGFzaCIgb2YgbW9ydGFsaXR5LCB3aXRoIGludGVuc2l0eSAxLzMgb2YKYWxsLWNhdXNlIGFubnVhbCBtb3J0YWxpdHkuIEhvdyBtYW55IHBlcnNvbiB5ZWFycyB3aWxsIGJlIGxvc3Q/CgpgYGB7cn0KIyMgTnVtYmVyIG9mIGRlYXRocyBhdCBlYWNoIGFnZQpEeC5mbGFzaCA9IE54LnN0YXRpb25hcnkgKiBoeC8zCgpsb3N0LnB5ID0gc3VtKER4LmZsYXNoICogZXgpCnByaW50KGxvc3QucHkpCiMjIFsxXSAxNC44MzQzOCwgMTQuOCBfbWlsbGlvbl8gbm90IF9iaWxsaW9uXwpgYGAKCldoYXQgZnJhY3Rpb24gb2YgdGhlIG9yaWdpbmFsIHBlcnNvbi15ZWFycyBvZiB0aGUgcG9wdWxhdGlvbiB3ZXJlIGxvc3Q/CmBgYHtyfQpsb3N0LnB5LmZyYWMgPSBsb3N0LnB5IC8gcmVtYWluaW5nLnB5CnByaW50KGxvc3QucHkuZnJhYykKIyMgWzFdIDAuMDAxMjc4MDg5CiMjIG9yCiMjIDEvbG9zdC5weS5mcmFjCiMjIFsxXSA3ODIuNDE3OQojIyBhIGJpdCBtb3JlIHRoYW4gMS84MDAKYGBgCgoKPiBRMi4gSG93IG1hbnkgcGVyc29uIHllYXJzIHJlbWFpbiBfcGVyIHBlcnNvbl8gYWZ0ZXIgdGhlIGZsYXNoIG9mCj4gbW9ydGFsaXR5PyBIb3cgbWFueSB5ZWFycyBhcmUgbG9zdCBfcGVyIHBlcnNvbl8/IElzIHRoaXMgYSBmZXcKPiAgeWVhcnMsIG1vbnRocywgd2Vla3MsIGRheXMsIG9yIGhvdXJzLCAuLi4/CgpgYGB7cn0KIyMgcGVyc29uIHllYXJzIHJlbWFpbmluZyBwZXIgcGVyc29uCnJlbWFpbmluZy5weS9zdW0oTnguc3RhdGlvbmFyeSkKCiMjIG51bWJlciBsb3N0IHBlciBwZXJzb24gCmxvc3QucHkvc3VtKE54LnN0YXRpb25hcnkpCgojIyBhcHByb3hpbWF0ZWx5IDMgd2Vla3MgCjAuMDUzMjA1MTEqMzY1CmBgYAoKCgojIyBDLiBTaGFyZSBvZiBwZXJzb24teWVhcnMgbG9zdCAodXNpbmcgb3VyIGFwcHJveGltYXRpb24pCgpDb21wYXJlIHlvdXIgYW5zd2VyIHRvIG91ciBhcHByb3hpbWF0aW9uIHdoaWNoIHRlbGxzIHVzIHRoYXQgdGhlCmZyYWN0aW9uIG9mIHBlcnNvbiB5ZWFycyBsb3N0IGluIHRoaXMgY2FzZSBzaG91bGQgYmUgYWJvdXQgSCAqIGRlbHRhL0EKCldlIGxlYXZlIGl0IHRvIHlvdSB0byBjYWxjdWxhdGUgJEgkIGFuZCAkQSQgdGhhdCBjb3JyZXNwb25kIHRvIHRoZSBzdGF0aW9uYXJ5IHBvcHVsYXRpb24gdG8gdGhlIDIwMTkgVVMgbGlmZSB0YWJsZQoKKE5vdGU6IFRoZSB2YWx1ZXMgc2hvdWxkIGJlIHNvbWV0aGluZyBjbG9zZSB0byAkSCA9IDAuMTUkIGFuZCAkQSA9IDQwJC4gSWYgeW91J3JlIGhhdmluZyB0cm91YmxlIGVzdGltYXRpbmcgdGhlIGV4YWN0IHZhbHVlcywgeW91IGNhbiB1c2UgdGhlc2UgaW4gb3JkZXIgdG8gYW5zd2VyIHRoZSBRcykKCmBgYHtyfQpkZWx0YSA9IDEvMwpBID0gc3VtKHggKiAoTHggLyBzdW0oTHgpKSkgIyMgZmlsbCBpbiBhIGZvcm11bGEgZm9yIGF2ZXJhZ2UgYWdlIG9mIHN0YXRpb25hcnkgcG9wdWxhdGlvbi4gCiMjIEhpbnQ6IGZyYWN0aW9uIGFnZWQgeCBpcyBMeCAvIHN1bShMeCkKCkggPSAtc3VtKGxvZyhMeCkqTHgpL2UwICAjIyBGaWxsIGluIGZvcm11bGEgZm9yIEtleWZpdHoncyBlbnRyb3B5IEguIAojIyBIaW50OiBUYWtlIGEgbG9vayBhdCBleGVyY2lzZSAyLgoKbG9zdC5weS5mcmFjLmhhdCAgPSBIICogZGVsdGEgLyBBCnByaW50KGxvc3QucHkuZnJhYy5oYXQpCmBgYAo+IFEzLiBIb3cgZGlkIHdlIGRvPyBBcmUgd2UgY2xvc2UgdG8gbGlmZS10YWJsZSBiYXNlZCBjYWxjdWxhdGlvbj8KCldlIGRpZCB3ZWxsID0gIGFyZSB2ZXJ5IGNsb3NlISAKCj4gUTQuIE9uIHR3aXR0ZXIsIG9uZSBvZiB0aGUgd29ya3Nob3AgcGFydGljaXBhbnRzIGRpZG4ndCBsaWtlIHRoaXMKPiBhcHByb2FjaCwgc2F5aW5nIHRoYXQgdGhlIHRpbnkgbnVtYmVyIHdhcyBtaXNsZWFkaW5nIC0tICBhbmQgc2FpZCB0aGF0Cj4gaXQgd2FzIGxpa2UgY29tcGFyaW5nIHRoZSBlY29ub21pYyBkYW1hZ2UgZG9uZSBieSBIdXJyaWNhbmUgS2F0cmluYQo+IGluIE5ldyBPcmxlYW5zIHRvIHRoZSBHRFAgb2YgdGhlIGVudGlyZSBVU0EuIEl0IHdvdWxkIHNlZW0KPiBzbWFsbCwgYnV0IGlzIGEgbWluaW1pemluZyB3YXkgdG8gdGhpbmsgYWJvdXQgdGhlIGFjdHVhbCBkYW1hZ2Ugb2YKPiB0aGUgSHVycmljYW5lLiBXaGF0IGRvIF95b3VfIHRoaW5rPwoKSSB0aGluayBpdCdzIG9uZSBwZXJzcGVjdGl2ZS4gCgpOb3RlOiBXaGVuIGNvbXBhcmluZyBwYXN0IG1vcnRhbGl0eSBjcmlzaXMsIEdvbGRzdGVpbiBhbmQgTGVlIGhhZCBzaW1pbGFyIGNvbmNlcm5zIGFuZCBlbmRlZCB1cCBkaXZpZGVkIHJlbWFpbmluZy15ZWFycy1sb3N0IGZyb20gZWFjaCBjcmlzaXMgYnkgdGhlIHJlbWFpbmluZy15ZWFycy1sb3N0IGluIGEgY29ycmVzcG9uZGluZyBub24tY3Jpc2lzIHllYXIuIFlvdSBjYW4gbG9vayBhdCB0aGVpciBGaWcuIDQgdG8gc2VlIHRoZSByZXN1bHRzIG9mIHRoaXMgYW5hbHlzaXMuIChodHRwczovL3d3dy5wbmFzLm9yZy9jb250ZW50LzExNy8zNi8yMjAzNS5mdWxsKQoKIyMgQ29uZ3JhdHVsYXRpb25zIQoKWW91J3ZlIGZpbmlzaGVkIHRoZSBsYXN0IGV4ZXJjaXNlIG9mIHRoZSBkYXkhCgoKCgo=