Person-years lost from Covid BFDW, Day 2, Lecture 3

Joshua R. Goldstein Thomas B. Cassidy

May 2021

Our plan

- Life expectancy criticisms
- Remaining person years lost as an alternative
- Mathematics of lost lives and lost life
- Elegance \neq relevance?

Technical problem: \mathcal{H} is not constant

Keyfitz H in Sweden (males)

Populations with different base mortality will see different changes

Substantive problem: isn't e_{0} a "misleading indicator"?

In the context of epidemic mortality, life expectancy at birth is a misleading indicator, because it implicitly assumes the epidemic is experienced each year over and over again as a person gets older.

- Goldstein and Lee (2000)

e_{0} as "standardization"

Life expectancy is reciprocal of standardized mortality, with period survivorship as standard.

$$
\frac{\int h(a) \ell(a) d a}{\int \ell(a) d a}
$$

e_{0} as "standardization"

Life expectancy is reciprocal of standardized mortality, with period survivorship as standard.

$$
\frac{\int h(a) \ell(a) d a}{\int \ell(a) d a}=1
$$

e_{0} as "standardization"

Life expectancy is reciprocal of standardized mortality, with period survivorship as standard.

$$
\frac{\int h(a) \ell(a) d a}{\int \ell(a) d a}=\frac{1}{e_{0}}
$$

So with different life tables, we'll have different standard pop $\ell(x)$.

Loss of person years

- The members of a population each have some expected future years of life.
- When a crisis kills people, a portion of that future life is lost.
- For a stationary population, Goldstein and Lee (2020) provided a relationship, bringing together e_{0},

Loss of person years

- The members of a population each have some expected future years of life.
- When a crisis kills people, a portion of that future life is lost.
- For a stationary population, Goldstein and Lee (2020) provided a relationship, bringing together e_{0}, \mathcal{H},

Loss of person years

- The members of a population each have some expected future years of life.
- When a crisis kills people, a portion of that future life is lost.
- For a stationary population, Goldstein and Lee (2020) provided a relationship, bringing together $e_{0}, \mathcal{H}, \delta$, and even

Loss of person years

- The members of a population each have some expected future years of life.
- When a crisis kills people, a portion of that future life is lost.
- For a stationary population, Goldstein and Lee (2020) provided a relationship, bringing together $e_{0}, \mathcal{H}, \delta$, and even A_{0}

Proportion of remaining life lost

Our equation (3) from "cheatsheet"

$$
\frac{\Delta \theta_{0}}{\theta_{0}} \approx-\frac{\mathcal{H}}{A_{0}} \delta
$$

where θ_{0} is the number of remaining person-years in the population before the crisis.

Set up

Assume a stationary population and proportional crisis

- Person-years remaining before crisis

$$
\int N(a) e(a) d a=\int B \ell(a) e(a) d a
$$

- Person-years lost

$$
\int D(a) e(a) d a=\int B \ell(a) \delta h(a) e(a) d a
$$

Combining, proportion of remaining person years of life:

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\mathrm{PY} \text { lost }}{\mathrm{PY} \text { remaining }}=-\delta \frac{\int \ell(a) h(a) e(a) d a}{\int \ell(a) e(a) d a}
$$

Evaluating

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\mathrm{PY} \text { lost }}{\mathrm{PY} \text { remaining }}=-\delta \frac{\int \ell(a) h(a) e(a) d a}{\int \ell(a) e(a) d a}
$$

1. Does anyone recognize the numerator?

Evaluating

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\mathrm{PY} \text { lost }}{\mathrm{PY} \text { remaining }}=-\delta \frac{\int \ell(a) h(a) e(a) d a}{\int \ell(a) e(a) d a}
$$

1. Does anyone recognize the numerator?

It's the same as numerator of entropy.

Evaluating

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\text { PY lost }}{\text { PY remaining }}=-\delta \frac{\int \ell(a) h(a) e(a) d a}{\int \ell(a) e(a) d a}
$$

1. Does anyone recognize the numerator?

It's the same as numerator of entropy.
2. How about the denominator?

Evaluating

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\mathrm{PY} \text { lost }}{\mathrm{PY} \text { remaining }}=-\delta \frac{\int \ell(a) h(a) e(a) d a}{\int \ell(a) e(a) d a}
$$

1. Does anyone recognize the numerator?

It's the same as numerator of entropy.
2. How about the denominator?

It turns out it's top of A_{0} (Tom, can derive if we have time)

Evaluating

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\mathrm{PY} \text { lost }}{\mathrm{PY} \text { remaining }}=-\delta \frac{\int \ell(a) h(a) e(a) d a}{\int \ell(a) e(a) d a}
$$

1. Does anyone recognize the numerator?

It's the same as numerator of entropy.
2. How about the denominator?

It turns out it's top of A_{0} (Tom, can derive if we have time)
Dividing top and bottom by e_{0} gives

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\mathrm{PY} \text { lost }}{\text { PY remaining }}=-\delta \frac{\mathcal{H}}{A_{0}}
$$

An example

Say $\delta=1 / 2, H=0.15, A_{0}=40$
Then,

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\mathrm{PY} \text { lost }}{\mathrm{PY} \text { remaining }}=-\delta \frac{\mathcal{H}}{A_{0}}=
$$

An example

Say $\delta=1 / 2, H=0.15, A_{0}=40$
Then,

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\text { PY lost }}{\text { PY remaining }}=-\delta \frac{\mathcal{H}}{A_{0}}=(1 / 2)(.15) / 40
$$

An example

Say $\delta=1 / 2, H=0.15, A_{0}=40$
Then,

$$
\frac{\Delta \theta_{0}}{\theta_{0}}=\frac{\text { PY lost }}{\text { PY remaining }}=-\delta \frac{\mathcal{H}}{A_{0}}=(1 / 2)(.15) / 40<1 / 500
$$

Why so small, when mortality increased by so much?

$$
\frac{\text { PY Lost }}{\text { PY Remaining }}=\frac{D_{\text {crisis }} \cdot \bar{e}(\text { dying })}{N \cdot \bar{e}(\text { living })}
$$

Why so small, when mortality increased by so much?

$$
\frac{\text { PY Lost }}{\text { PY Remaining }}=\frac{D_{\text {crisis }} \cdot \bar{e}(\text { dying })}{N \cdot \bar{e}(\text { living })} \approx C D R_{\text {crisis }} \cdot \frac{10}{40}
$$

Why so small, when mortality increased by so much?

$$
\frac{\text { PY Lost }}{\text { PY Remaining }}=\frac{D_{\text {crisis }} \cdot \bar{e}(\text { dying })}{N \cdot \bar{e}(\text { living })} \approx C D R_{\text {crisis }} \cdot \frac{10}{40}
$$

So we have $1 / 4$ of a per-capita death rate ..., a very small number. (Mostly, because the base rate of mortality is already small.)

Comparing to baseline (Goldstein and Lee, 2020)
 \section*{Epidemic deaths (in thousands)}

Epidemic deaths / Population size (per thousand)

Life years lost, relative to non-epidemic mortality

Breakout Exercises

Our usual A, B, C (but spiced up with some controversy?)
A Calculate person years in population
B Calculate person years lost
C Compare to our approximation

Discussion

Your questions first

Discussion

Your questions first

- About how many person years were lost per person in the US from Covid in 2020? Multiple years, multiple weeks, ...
- Who's right: Ilya or Josh? (Or neither?)
- How do we think about effect on cohort life expectancy?
- Why did Spanish Flu, HIV, and Opioids result in a larger loss of remaining life?
- Should we adjust for age structure?

Bringing it all back home (Bob Dylan just turned 80!)

Some common threads

- Each measure ($C D R, e_{0}, P Y R$) tried to accomplish something
- Formal analysis simplified and identified key properties - and potential problems.
- New problems, new formulations Results discovered 100 years ago are still important today.

A concluding quote

Formal demography
"is nothing more than clear analytic thinking about a demographic problem, with hard-edged concepts, typically distilled into mathematical expressions."

- Ron Lee (2014),

