
Berkeley Formal 
Demography Workshop 2021

Day 1: Population dynamics and stable 
population theory
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Quick recap of pre-
workshop exercises

Fish population with three life stages: Egg, Juvenile, Adult


We assumed constant stage (or age) specific mortality and 
fertility rates and projected forward for 10 years.
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Define the Leslie matrix which describes the transition of the 
fish population from one stage to the next in a discrete (one 
year in our example) time step:


A =
0 F2 F3

P21 0 0
0 P32 P33

=
0 5 10

0.3 0 0
0 0.5 0.2

Quick recap of pre-
workshop exercises
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Quick recap of pre-
workshop exercises
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Quick recap of pre-
workshop exercises
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Looks like the age-structure becomes stable after a few years! 
This is one of the key concepts of stable population theory - 
fixed mortality and fertility rates produce a stable age 
structure over time.

Quick recap of pre-
workshop exercises
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Assuming exponential growth:  where r is the 
annual growth rate

K(t+1) = K (t)er

Quick recap of pre-
workshop exercises
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Quick recap of pre-
workshop exercises

In the long run, the population grows at an annual constant 
rate! Moreover, we also saw that regardless of the 
characteristics of the starting population (i.e. age structure and 
size), if constant mortality and fertility rates are applied for a 
long time, the population will eventually attain the 
characteristics (long-run r and stable age distribution) that 
are intrinsic to those constant rates.
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The stable population model is used by demographers to 
demonstrate the long-term implications of maintaining 
short-term demographic patterns, and to identify the effects 
of the change in one parameter on the value of others. 


An appreciation of the properties of stable populations helps 
us to understand the processes of destabilization following 
changes in fertility or mortality that are taking place all over 
the world in the 21st century.

Stable population theory
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Suppose births are growing exponentially: 
B(t) = B(0) × ert

Population alive

Age (x)

probability of 
surviving 
from birth to 
age x (lx)

year 0 year 1 year 2 year 3 year 4 year 5

0 1 1000
1 0.75 0
2 0.5 0
3 0.25 0
4 0 0

Stable population theory: A 
simple example
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Suppose births are growing exponentially: 
B(t) = B(0) × ert

Population alive

Age (x)

probability of 
surviving 
from birth to 
age x (lx)

year 0 year 1 year 2 year 3 year 4 year 5

0 1 1000 1000 er

1 0.75 0 750
2 0.5 0 0
3 0.25 0 0
4 0 0 0

Stable population theory: A 
simple example
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Suppose births are growing exponentially: 
B(t) = B(0) × ert

Population alive

Age (x)

probability of 
surviving 
from birth to 
age x (lx)

year 0 year 1 year 2 year 3 year 4 year 5

0 1 1000 1000 er 1000 e2r

1 0.75 0 750 750 er

2 0.5 0 0 500
3 0.25 0 0 0
4 0 0 0 0

Stable population theory: A 
simple example
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Suppose births are growing exponentially: 
B(t) = B(0) × ert

Population alive

Age (x)

probability of 
surviving 
from birth to 
age x (lx)

year 0 year 1 year 2 year 3 year 4 year 5

0 1 1000 1000 er 1000 e2r 1000 e3r 1000 e4r 1000 e5r

1 0.75 0 750 750 er 750 e2r 750 e3r 750 e4r

2 0.5 0 0 500 500 er 500 e2r 500 e3r

3 0.25 0 0 0 250 250 er 250 e2r

4 0 0 0 0 0 0 0

Stable population theory: A 
simple example
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Let’s look at change from K(t=year 3) to K(t=year 4):




K(t = 4)
K(t = 3)

=
1000e4r + 750e3r + 500e2r + 250er

1000e3r + 750e2r + 500er + 250
= er

Population alive

Age (x)

probability of 
surviving 
from birth to 
age x (lx/l0)

year 3 year 4 year 5 year 6 year 7 year 8

0 1 1000 e3r 1000 e4r 1000 e5r 1000 e6r 1000 e7r 1000 e8r

1 0.75 750 e2r 750 e3r 750 e4r 750 e5r 750 e6r 750 e7r

2 0.5 500 er 500 e2r 500 e3r 500 e4r 500 e5r 500 e6r

3 0.25 250 250 er 250 e2r 250 e3r 250 e4r 250 e5r

4 0 0 0 0 0 0 0

Stable population theory: 
Population size over time
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It looks like the age structure becomes stable from year 3 
onwards. If we define year 3 as t = 0:


   


The population also grows exponentially!!

K(t) = K(0)ert

Population alive

Age (x)

probability of 
surviving 
from birth to 
age x (lx/l0)

year 3 year 4 year 5 year 6 year 7 year 8

0 1 1000 e3r 1000 e4r 1000 e5r 1000 e6r 1000 e7r 1000 e8r

1 0.75 750 e2r 750 e3r 750 e4r 750 e5r 750 e6r 750 e7r

2 0.5 500 er 500 e2r 500 e3r 500 e4r 500 e5r 500 e6r

3 0.25 250 250 er 250 e2r 250 e3r 250 e4r 250 e5r

4 0 0 0 0 0 0 0

(you can check the math at 
home, for example by doing 
K(5)/K(3))

Stable population theory: 
Population size over time
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Population also grows exponentially at the same constant 
rate as the number of births. This means that the birth rate 
(births/total population) is constant over time.

Population alive

Age (x)

probability of 
surviving 
from birth to 
age x (lx/l0)

year 3 year 4 year 5 year 6 year 7 year 8

0 1 1000 e3r 1000 e4r 1000 e5r 1000 e6r 1000 e7r 1000 e8r

1 0.75 750 e2r 750 e3r 750 e4r 750 e5r 750 e6r 750 e7r

2 0.5 500 er 500 e2r 500 e3r 500 e4r 500 e5r 500 e6r

3 0.25 250 250 er 250 e2r 250 e3r 250 e4r 250 e5r

4 0 0 0 0 0 0 0

Stable population theory: 
Birth rate over time
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The number alive at each age changes from year to year - it 
grows exponentially at the rate, r. Because the total 
population is also growing exponentially at the same rate,  
the proportion of the population in each age group 
becomes constant. 

Population alive

Age (x)

probability of 
surviving 
from birth to 
age x (lx/l0)

year 3 year 4 year 5 year 6 year 7 year 8

0 1 1000 e3r 1000 e4r 1000 e5r 1000 e6r 1000 e7r 1000 e8r

1 0.75 750 e2r 750 e3r 750 e4r 750 e5r 750 e6r 750 e7r

2 0.5 500 er 500 e2r 500 e3r 500 e4r 500 e5r 500 e6r

3 0.25 250 250 er 250 e2r 250 e3r 250 e4r 250 e5r

4 0 0 0 0 0 0 0

Stable population theory: 
Age structure over time
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To see this more clearly, we can express the ratio of 
population numbers in various age intervals to the number of 
births. 

Using Year 4 as an example:


       

K(x = 1,t = 1)

B(t = 1)
=

750e3r

1000e4r
= e−r l1

l0
= e−r l1

Stable population theory: 
Age structure over time
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To see this more clearly, we can express the ratio of 
population numbers in various age intervals to the number of 
births. 

Using Year 4 as an example:


       


and         


 


K(x = 1,t = 1)
B(t = 1)

=
750e3r

1000e4r
= e−r l1

l0
= e−r l1

K(x = 2,t = 1)
B(t = 1)

=
500e2r

1000e4r
= e−2r l2

l0
= e−2r l2

Stable population theory: 
Age structure over time
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To see this more clearly, we can express the ratio of 
population numbers in various age intervals to the number of 
births. 

Using Year 4 as an example:


       


and         


 


In general:          or        

K(x = 1,t = 1)
B(t = 1)

=
750e3r

1000e4r
= e−r l1

l0
= e−r l1

K(x = 2,t = 1)
B(t = 1)

=
500e2r

1000e4r
= e−2r l2

l0
= e−2r l2

K(x, t)
B(t)

= e−rx lx K(x, t) = B(t)e−rx lx

Stable population theory: 
Age structure over time
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Let’s look at this equation more carefully:      


K(x, t) = B(t)e−rx lx
Population 

aged x 
alive now 
at time t

Stable population theory: 
Age structure over time
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Let’s look at this equation more carefully:      


K(x, t) = B(t)e−rx lx
Population 

aged x 
alive now 
at time t

Stable population theory: 
Age structure over time

B(t) = B(0)ert

B(t) = B(t − x)erx

B(2021) = B(2000)e21r; t = 2021,x = 21

B(t − x) = B(t)e−rx

Births that 
happened 

x years 
ago
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Let’s look at this equation more carefully:      


K(x, t) = B(t)e−rx lx
Population 

aged x 
alive now 
at time t

Stable population theory: 
Age structure over time

Births that 
happened 

x years 
ago

Probability 
of 

surviving 
to age x
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Let’s look at this equation more carefully:      


K(x, t) = B(t)e−rx lx
Population 

aged x 
alive now 
at time t

Stable population theory: 
Age structure over time

Births that 
happened 

x years 
ago

Probability 
of 

surviving 
to age x
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We will come back to this 
idea again later!



      

To get proportion at each age, divide by the total population, 

 :





Thus:   


This is constant year to year since  and  are constant!


K(x, t) = B(t)e−rx lx

K
K(x, t)
K(t)

= c(x, t) =
B(t)
K(t)

e−rx lx

c(x, t) = be−rx lx
b lx

c(x) = be−rx lx

25

Stable population theory: 
Age structure over time



In a stable population, the total size of the population may 
change, growing or shrinking at a constant rate, but the 
number at every age changes at exactly the same rate, so 
that when it is expressed as a fraction of the total this 
proportion does not change over time.


The age composition, c(x), is constant over time, and can 
be expressed in terms of the birth rate, growth rate, and the 
life table survivorship function. It does not depend on the 
initial population size or age structure.


26

Stable population theory: 
Age structure over time



Recap
We have seen that a stable population emerges when:


1) births grow at a constant annual rate (we assumed 
exponential growth)


2) age-specific mortality rates (i.e. the life table) are constant


These conditions must prevail for a period - at least as long 
as the maximum age to which anyone survives.

27



Recap
The resulting stable population:


1) size changes at the same constant rate as the number of 
births 


3) has a constant birth rate, death rate, and growth rate (b not 
necessarily equal to d; so r can be increasing, decreasing or 
constant)


2) has a constant proportion (but not necessarily number) of 
people alive at each age 

28



Lotka’s demonstration of the conditions 
necessary for a stable population

The mathematician Alfred Lotka showed that a stable 
population would emerge if:


1) age-specific fertility rates are constant (Note: the first 
condition in our simple example is replaced by this)


2) age-specific mortality rates (i.e. the life table) are constant


3) there is no net migration
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Lotka’s demonstration of the conditions 
necessary for a stable population

Lotka showed that a stable population would be produced by 
constant age-specific fertility and mortality rates applied over 
a long period of time. 


He proved that constant age-specific fertility and mortality 
rates combine to produce the growth rate in the annual 
number of births, and of the entire population. 


We won’t go into the mathematical details of Lotka’s proof 
but we will outline it.
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Renewal equation
Lotka’s proof is based on the renewal equation (i.e. the idea that the 
population size today is dependent on births that happened in the 
past and the prevailing mortality rates).


Consider a single-sex (female) projection:


 = # of women aged x at time t


 = survivorship to age x for cohort born in a certain year 


 = fertility rate for x year olds who were born in a certain 
year (just considering female births; assume that we have multiplied 
fertility rates with )

K(x, t)

l(x, birth year)

f(x, birth year)

ffab
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Renewal equation
 = # of women aged x at time t


Let’s break this down. We know that:


K(x, t) = B(t − x) l(x, t − x)

Number of x 
year olds today 

at time, t
=

Number of 0 
year olds x 

years ago at 
time, t-x

Probability of 
surviving to age 
x for the cohort 

born x years 
ago at time, t-x 

X
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Renewal equation
 = # of women aged x at time t


Let’s break this down. We know that:


K(x, t) = B(t − x) l(x, t − x)

K(x, t) = K(0,t − x) l(x, t − x)

Number of x 
year olds today 

at time, t
=

Number of 0 
year olds x 

years ago at 
time, t-x

Probability of 
surviving to age 
x for the cohort 

born x years 
ago at time, t-x 

X
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Renewal equation
 = # of women aged x at time t


Let’s break this down. We know that:


K(x, t) = B(t − x) l(x, t − x)

K(x, t) = K(0,t − x) l(x, t − x)

Number of x 
year olds today 

at time, t
=

Number of 0 
year olds x 

years ago at 
time, t-x

Probability of 
surviving to age 
x for the cohort 

born x years 
ago at time, t-x 

X

Births that 
happened x 
years ago at 

time, t-x
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Renewal equation
 = # of women aged x at time t


Let’s break this down. We know that:


K(x, t) = B(t − x) l(x, t − x)

K(x, t) = K(0,t − x) l(x, t − x) = B(t − x) l(x, t − x)

Number of x 
year olds today 

at time, t
=

Number of 0 
year olds x 

years ago at 
time, t-x

Probability of 
surviving to age 
x for the cohort 

born x years 
ago at time, t-x 

X

Births that 
happened x 
years ago at 

time, t-x
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Renewal equation
 = # of women aged x at time t


Let’s think about births (B) at time, t:


Babies born at time, t, to mothers who are x years old



K(x, t) = B(t − x) l(x, t − x)

= K(x, t) f(x, t − x)
Women 
aged x 

at time t

Fertility rates of 
x year olds who 

were born at 
time t-x
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Renewal equation
 = # of women aged x at time t


Let’s think about births (B) at time, t:


Babies born at time, t, to mothers who are x years old



Add up births to mothers of all ages to get total births at time, t:


K(x, t) = B(t − x) l(x, t − x)

= K(x, t) f(x, t − x)

B(t) = ∫ K(x, t) f(x, t − x) dx
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Renewal equation
 = # of women aged x at time t


Total births at time, B(t):





Substitute in above expression for :





In discrete time: 

K(x, t) = B(t − x) l(x, t − x)

B(t) = ∫ K(x, t) f(x, t − x) dx

K(x, t)

B(t) = ∫ B(t − x) l(x, t − x) f(x, t − x) dx

B(t) = ∑ B(t − x) nLx(t − x) n fx(t − x)
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Renewal equation
 = # of women aged x at time t


Total births at time, B(t):





Substitute in above expression for :





K(x, t) = B(t − x) l(x, t − x)

B(t) = ∫ K(x, t) f(x, t − x) dx

K(x, t)

B(t) = ∫ B(t − x) l(x, t − x) f(x, t − x) dx
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Renewal equation
 = # of women aged x at time t


Total births at time, B(t):





Substitute in above expression for :





K(x, t) = B(t − x) l(x, t − x)

B(t) = ∫ K(x, t) f(x, t − x) dx

K(x, t)

B(t) = ∫ B(t − x) l(x, t − x) f(x, t − x) dx
This is the renewal 

equation! It relates births 
at time, t, to a stream of 

births in the pastBirths 
today

Women 
born in 
the past

Survived 
to age x

Had 
babies at 
this rate
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Outline of Lotka’s proof
Start with the renewal equation:





If mortality and fertility rates remain constant through time we 
don’t need to keep track of the birth cohort (drop the t-x in 
the l and f function since those rates don’t change over time):


B(t) = ∫ B(t − x) l(x, t − x) f(x, t − x) dx

B(t) = ∫ B(t − x) l(x) f(x) dx
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Outline of Lotka’s proof



This is a homogenous integral equation. These equations can 
be solved by a process of trial and error, by looking for an 
expression for  which succeeds in equating the left-hand 
and right-hand sides of the equation. 


B(t) = ∫ B(t − x) l(x) f(x) dx

B(t)
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Outline of Lotka’s proof



Lotka (1939) showed that an exponentially growing birth 
series:  is a solution to this renewal equation. 


B(t) = ∫ B(t − x) l(x) f(x) dx

B(t) = B(0)ert
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Outline of Lotka’s proof



Lotka (1939) showed that an exponentially growing birth 
series:  is a solution to this renewal equation.

 


or we can write  where x is the number of 
years that have passed


B(t) = ∫ B(t − x) l(x) f(x) dx

B(t) = B(0)ert

B(t) = B(0)ert

B(t) = B(t − x)erx
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Outline of Lotka’s proof



Lotka (1939) showed that an exponentially growing birth 
series:  is a solution to this renewal equation.

 


or we can write  where x is the number of 
years that have passed


B(t) = ∫ B(t − x) l(x) f(x) dx

B(t) = B(0)ert

B(t) = B(0)ert

B(t) = B(t − x)erx

B(t − x) = B(t)e−rx

45



Outline of Lotka’s proof



Substitute  into equation our renewal 
equation above.

B(t) = ∫ B(t − x) l(x) f(x) dx

B(t − x) = B(t)e−rx

46



Outline of Lotka’s proof



Substitute  into equation our renewal 
equation above. If we plug this in, we get:





This is the Lotka-Euler equation!

B(t) = ∫ B(t − x) l(x) f(x) dx

B(t − x) = B(t)e−rx

1 = ∫ e−rx l(x) f(x) dx
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Intrinsic growth rate



Although we won’t prove it in this class, it can be shown that, given a set of 
 and , there will always be a unique value of “r” such that the left-

hand side is equal to 1. 


That value of r is the constant growth rate in the annual number of births, and 
is also the growth rate of the stable population.


It is referred to as the “intrinsic growth rate” of the stable population, 
because it is intrinsic to the mortality, , and fertility, , schedules that 
produced it. This means that the value of the growth rate, r, is not arbitrary - it 
is determined jointly by the age-specific fertility and age-specific mortality 
schedules.

1 = ∫ e−rx l(x) f(x) dx

l(x) f(x)

l(x) f(x)
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Birth rate in stable 
population

The birth rate in a stable population is constant. This is because both the 
number of births and the total population size are growing at the same constant 
rate.


CBR = 


Therefore, 


Since  and  are constant, the birth rate is also constant over time. 


With discrete age groups: 

b(t) =
B(t)
K(t)

b =
1

∫ e−rx l(x) dx

r l(x)

b =
1

∑ e−rx nLx

l0

At home, try deriving this 
equation from B(t) and K(t)!
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Stable age structure
Already saw in our simple example:


The age composition in a stable population, c(x), is constant over time, and can be 
expressed in terms of the birth rate, growth rate, and the life table survivorship function. 





Proportion in the stable population (which is growing at rate, r) at age x:


 


In discrete age groups (Wachter, page 229): 


 and 

K(x, t) = B(t − x) l(x) = B(t) e−rx l(x)

c(x) =
K(x, t)
K(t)

=
B(t)
K(t)

e−rx l(x) = b e−rx l(x)

nKx(t) = B(t) e−rx nLx

l0
ncx = b e−rx nLx

l0

c(x) is constant over time 
in a stable population.
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Characteristics of a stable 
population

These results show that the age distribution, birth rate, 
death rate, and growth rate of a stable population are 
constant over time and are entirely determined by the 
age-specific fertility and age-specific mortality rates.


Whatever the features of the population on which those 
fertility and mortality schedules are imposed, the population 
will eventually attain the characteristics “intrinsic” to the 
fertility and mortality schedules.
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Implications of the stable 
population model

These results have powerful implications:


1) populations with unchanging vital rates, for a long-time, are stable 
(roughly true for a lot of human history, but not recent times).


2) Every populations’ set of age-specific mortality and fertility rates 
imply an underlying stable equivalent population that would emerge 
if those rates remained constant for a long time. This gives us a 
sense of what current demographic parameters imply for long-run 
demographic prospects.


3) The relations established by Alfred Lotka provides a way for 
investigating how changes in one demographic parameter affects all 
others
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Lab 1 Section I: 
Introduction to the data

Use fertility, mortality and initial population data from six 
countries.


Project population forward in time assuming unchanging 
mortality and fertility rates.


Investigate the implications of stable population theory.


In the afternoon, we will see how linear algebra and the 
eigendecomposition of the Leslie Matrix gives us equivalent 
results
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Population projection using 
matrix algebra

The mechanics of the cohort component projection method 
can be compactly written in matrix notation. A lot of the work 
in this area can be attributed to Patrick H. Leslie (1945, 1948).








More generally, if A remains constant after t projection steps:


K(1) = A ⋅ K (0)

K(2) = A ⋅ K (1) = A ⋅ A ⋅ K (0) = A2 ⋅ K (0)

K(t) = At ⋅ K (0)
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Population projection using 
matrix algebra



We saw in our pre-workshop exercises that when the Leslie 
matrix A is raised to a high enough power, the population 
age structure becomes constant and the population growth 
rate during each projection interval becomes constant.


This result is related to the stable population theory! 

K(t) = At ⋅ K (0)
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Population projection using 
matrix algebra

Moreover, matrix algebra (thanks to the Perron-Frobenius 
Theorem) offers an elegant way to derive the constant age 
distribution and the constant growth rate. 


When a population has reached the steady state and has a 
constant age distribution, it must satisfy:


 where Ks(t) is now the 
unchanging stable age distribution
K(t + 1) = A ⋅ Ks(t) = λ Ks(t)
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Population projection using 
matrix algebra

Moreover, matrix algebra (thanks to the Perron-Frobenius 
Theorem) offers an elegant way to derive the constant age 
distribution and the constant growth rate. 


When a population has reached the steady state and has a 
constant age distribution, it must satisfy:


 where Ks(t) is now the 
unchanging stable age distribution
K(t + 1) = A ⋅ Ks(t) = λ Ks(t)

This might look familiar! 
For two reasons!
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Population projection using 
matrix algebra




First, for a stable population, we know that the population is 
growing exponentially. 


So stable population theory tells,  (or   where 
age groups are n years wide).

K(t + 1) = A ⋅ Ks(t) = λ Ks(t)

λ = er λ = enr

This might look familiar! 
For two reasons!
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Population projection using 
matrix algebra




Second, in linear algebra, eigendecomposition is a way to 
represent a matrix in terms of its eigenvectors and 
eigenvalues. For a diagonalizable square matrix, A, the vector 
v is an eigenvector of A if it satisfies:


 


where  is the eigenvalue corresponding to the eigenvector v.

K(t + 1) = A ⋅ Ks(t) = λ Ks(t)

A v = λ v

λ

This might look familiar! 
For two reasons!
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Eigendecomposition of the 
Leslie matrix

The Perron-Frobenius theorem guarantees that one 
eigenvalue will be positive and absolutely greater than all 
others. This is the dominant eigenvalue of the transition 
matrix.
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Eigendecomposition of the 
Leslie matrix

It turns out that the dominant eigenvalue gives us the annual 

growth rate of the population:  or 
λ = enr log(λ)
n

= r

61



Eigendecomposition of the 
Leslie matrix

It turns out that the dominant eigenvalue gives us the annual 

growth rate of the population:  or 


The right eigenvector associated with the dominant 
eigenvalue gives us the stable age distribution: v = Ks


The left eigenvector associated with the dominant 
eigenvalue gives us the reproductive value, which tells us 
something about the relative contributions of each age class 
to the next generation.

λ = enr log(λ)
n

= r
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Lab 1 Section II: Population 
Projections

Use fertility, mortality and initial population data from six 
countries.


Project population forward in time assuming unchanging 
mortality and fertility rates.


Investigate the implications of stable population theory.


In the afternoon, we will see how linear algebra and the 
eigendecomposition of the Leslie Matrix gives us 
equivalent results
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Infectious disease models 
There are parallels between models of population projection 
and models of infectious disease transmission.


The Susceptible-Infected-Recovered (SIR) model consists of 
three states (rather than ages) and captures the transition 
between these states.
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Infectious disease models 
The next generation matrix is a square transition matrix 
(similar to the Leslie matrix) that describes the transition 
from one state to another.


The dominant eigenvalue of the next generation matrix is 
the basic reproduction number, , which is the expected 
number of secondary infections from one infected person in 
a fully susceptible population.

R0
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Infectious disease models 
If we have an age and disease stage structured population, for a 
respiratory pathogen such as SARS-CoV-2 we can define the next-
generation matrix as:


NGM = Du . C . DdI  

Du = diagonal matrix with diagonal entries ui representing the probability of 
a successful transmission for age group i, given contact with an infectious 
individual


C = contact matrix, where the entries cij represents the average number of 
age-j individual than an age-i individual contacts per day


DdI = diagonal matrix with diagonal entries dI equal to the infectious period
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Infectious disease models 
If we have an age and disease stage structured population, for a 
respiratory pathogen such as SARS-CoV-2 we can define the next-
generation matrix as:


NGM = Du . C . DdI  

Du = diagonal matrix with diagonal entries ui representing the probability of 
a successful transmission for age group i, given contact with an infectious 
individual


C = contact matrix, where the entries cij represents the average number of 
age-j individual than an age-i individual contacts per day


DdI = diagonal matrix with diagonal entries dI equal to the infectious period

R0 is the dominant 
eigenvalue of NGM
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Lab 1 Section III: Social Contact 
Matrices and Infectious Disease Models

In the final part of the lab exercise, we will look at data from 
the Berkeley Interpersonal Contact Study (BICS) which has 
been collecting data on interpersonal contact over the course 
of the pandemic.


This allows us to generate age-structured contact matrices 
for the US.


We will use these contact matrices, and estimates of Du and 
DdI from the literature, to estimate R0 for COVID-19.
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